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Abstract: In an era that has been dominated by Structural Biology for the last 30-40 years, a dramatic change of focus 
towards sequence analysis has spurred the advent of the genome projects and the resultant diverging sequence/structure 
deficit. The central challenge of Computational Structural Biology is therefore to rationalize the mass of sequence infor-
mation into biochemical and biophysical knowledge and to decipher the structural, functional and evolutionary clues en-
coded in the language of biological sequences. In investigating the meaning of sequences, two distinct analytical themes 
have emerged: in the first approach, pattern recognition techniques are used to detect similarity between sequences and 
hence to infer related structures and functions; in the second ab initio prediction methods are used to deduce 3D structure, 
and ultimately to infer function, directly from the linear sequence. In this article, we attempt to provide a critical assess-
ment of what one may and may not expect from the biological sequences and to identify major issues yet to be resolved. 
The presentation is organized under several subtitles like protein sequences, pattern recognition techniques, protein terti-
ary structure prediction, membrane protein bioinformatics, human proteome, protein-protein interactions, metabolic net-
works, potential drug targets based on simple sequence properties, disordered proteins, the sequence-structure relationship 
and chemical logic of protein sequences. 
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1. PROTEIN SEQUENCES 

 Remarkably, at this writing there are 512994 sequence 
entries in the UniProtKB/Swiss-Prot protein knowledgebase 
http://ca.expasy.org/sprot/relnotes/relstat.html [1] (Fig. 1). 
The availability of protein sequences has made a telling dif-
ference in countless studies of biologically important mole-
cules. This wealth of data has transformed protein chemistry 
since the early pioneering efforts of Bernal and Crowfoot [2] 
and Perutz [3]. The vast quantity of data associated with 
these proteins poses enormous challenges to any attempt at 
sequence/structure/function annotation. In addition, struc-
ture-based programmatic initiatives now are common place, 
including for example a diversity of database analyses [4], 
taxonomic classification at the molecular level [5, 6], esti-
mates of the number of folds [7], and pattern recognition-
based approaches to prediction [8]. 

2. PATTERN RECOGNITION TECHNIQUES 

 Pattern recognition methods are built on the assumption 
that some underlying characteristic of a protein sequence, or 
of protein structure, can be used to identify similar traits in 
related proteins. Conserved protein sequence regions are 
extremely useful for identifying and studying functionally 
and structurally important regions [9]. Sequence conserva-
tion of homologous sequences is rarely homogeneous along 
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Fig. (1). A) Taxonomic Distribution of 512994 sequences 
(http://au.expasy.org/sprot/). B). Distribution of the sequences 
within eukaryota 
 

their length; as sequences diverge, their conservation is lo-
calized to specific regions [9]. In order to obtain the general 
structural features of conserved regions of all proteins, it is 
necessary to decide the scale of protein clustering, conserved 
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regions and structural features to analyze [9]. Natural choices 
are generically defined protein families [10], ungapped pro-
tein sequence motifs (blocks) that separate proteins into ei-
ther conserved or random signals [11] and the four basic 
secondary structure elements namely alpha helices, beta 
strands, structured turns, and loops [12]. 

 Relations between protein sequence and structure can be 
analyzed by either determining the sequence features of pre-
defined structures [13], or by determining structural features 
of conserved sequence regions. Han and Baker studied local 
structural features that predominate short sequence motifs, 
identifying correlations between specific sequence and struc-
ture motifs [14]. Secondary structure conservation was pre-
viously studied in structural alignments of protein families 
and secondary structure element substitution matrices were 
created [15]. The conservation of secondary structure ele-
ment was also studied in some specific protein families [16]. 
Helices and strands have a regular repetitive structure [17], 
and this suggests that helices and strands are conserved [9]. 
Protein loops and their flanking regions were also found to 
be conserved to the same extent in an analysis of a large set 
of proteins [18]. Proteins with similar sequences adopt simi-
lar structure [19, 20]. However, similar structures can have 
less than 12% sequence similarity [21, 22-24]. 

 Protein sequence comparison has become one of the most 
powerful tools for characterizing protein sequences because 
of the enormous amount of information that is preserved 
throughout the evolutionary process. One of the early at-
tempts to measure protein sequence comparison was substi-
tution matrices introduced by Dayhoff [25, 26]. A general 
approach for functional characterization of unknown proteins 
is to infer protein functions based on sequence similarity. 
One of the successful approaches is to define signatures of 
known families of biologically related proteins (typically at 
the functional or structural level). Signatures usually identify 
conserved regions among the family of proteins, revealing 
the importance for the function of their structural or physico-
chemical properties. A representative example of this ap-
proach is the well-known Prosite database [27], gathering 
protein sequence patterns and profiles for a large number of 
families. 

 In recent years a number of different classification sys-
tems have been developed to organize proteins [9]. Among 
the variety of classification schemes are: (1) hierarchical 
families of proteins, such as the superfamilies/families [28] 
in the PIR-PSD, and protein groups in ProtoMap [29]; (2) 
families of protein domains, such as those in Pfam [30] and 
ProDom [31]; (3) sequence motifs or conserved regions, 
such as in PROSITE [32] and PRINTS [33]; (4) structural 
classes, such as in SCOP [34] and CATH [35]; as well as (5) 
integrations of various family classifications, such as iPro-
Class [36] and InterPro [37]. 

 The PIR superfamily/family concept [38] the original 
such classification based on sequence similarity, is unique in 
providing comprehensive and non-overlapping clustering of 
protein sequences into a hierarchical order to reflect their 
evolutionary relationships. Proteins are assigned to the same 
superfamily/family only if they share end-to-end sequence 
similarity, including common domain architecture (i.e. the 
same number, order, and types of domains), and do not differ 

excessively in overall length (unless they are fragments or 
result from alternate splicing or initiators). Other major fam-
ily databases are organized based on similarities of domain 
or motif regions alone, as in Pfam and PRINTS. There are 
also databases that consist of mixtures of domain families 
and families of whole proteins, such as SCOP and 
TIGRFAMs [39]. However, in all of these, the protein-to-
family relationship is not necessarily one-to-one, as in PIR 
superfamily/family, but can also be one-to-many. The PIR 
superfamily classification is the only one that explicitly in-
cludes this aspect, which can serve to discriminate between 
multidomain proteins where functional differences are asso-
ciated with presence or absence of one or more domains. 
Family and superfamily classification frequently allow iden-
tification or probable function assignment for uncharacter-
ized (hypothetical) sequences. To assure correct functional 
assignments, protein identifications must be based on both 
global (whole protein, e.g. PIR superfamily) and local (do-
main and motif) sequence similarities [40]. 

3. PROTEIN TERTIARY STRUCTURE PREDICTION 

 Function follows form [41] and hence the need for struc-
tures. Stated alternatively, sequence to consequence [42] is 
the major challenge in proteomics investigations. The poten-
tial for protein tertiary structure prediction is nearly as vast 
as the diversity of biology itself. Folded proteins have appli-
cations in the area of sugar, chocolate, paper and pulp and 
textile and leather industry; de novo design of biocatalysts 
and in the area of nanobiomachines, nanofibres and quantum 
dots [43]. Determining the three-dimensional structure of 
protein molecules is a cornerstone for many aspects of mod-
ern biological research [44]. Currently close to half a million 
protein sequences are deposited in the UniProtKB/Swiss-
Prot protein knowledgebase [1] but only ~ 61, 000 of them 
have experimentally solved structures [45] (Fig. 2). These 
numbers can be frustrating to molecular and cell biologists 
who need 3D models of proteins for their research. The high 
demand of the community for protein structures has placed 
computer-based protein structure prediction, the only means 
to rapidly alleviate the problem, at an unprecedentedly cru-
cial position [44]. 

 A long standing goal of Computational Biology has been 
to devise a computer algorithm that takes, as input, an amino 
acid sequence and gives, the three dimensional native struc-
ture of a protein as an output [46]. The main motivation is to 
understand function at a molecular level besides making 
drug discovery faster and more efficient by replacing slow 
and expensive structural biology experiments with fast and 
less expensive computer simulations [46]. A major milestone 
in computer-based native structure prediction is the creation 
of CASP (Critical Assessment of Techniques for Structure 
Prediction) by John Moult [47]. In the CASP experiments, 
research groups apply their prediction methods to amino acid 
sequences for which the native structure is not known but to 
be determined and to be published soon. These competitions 
provide a good measure to benchmark methods and progress 
in the field in an arguably unbiased manner [48]. 

 Computational methods for protein tertiary structure pre-
diction can be classified into four groups: (a) comparative 
modeling (Table 1), (b) fold recognition (Table 2), (c) first 
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principles methods with database information (Table 3), and 
(d) first principles methods without database information. 
Comparative modeling relies on the principle that sequences, 
which are related evolutionarily, exhibit similar three dimen-
sional folded structures that is sequence similarity suggests 
structural similarity [49]. The accuracy of predictions by 
comparative modeling depends on the degree of sequence 
similarity. If the target and the template sequence have more 
than 50% of their sequences similar, predictions are of very 
good to high quality and have been shown to be as accurate 
as low-resolution X-ray predictions [50]. For 30-50% se-
quence identity, more than 80% of the C -atoms can be ex-
pected to be within 3.5 Å of their true positions [50], while 
for less than 30% sequence identity, the prediction is likely 
to contain significant errors [50, 51]. A recent advance for 
automated comparative modeling is the TASSER-Lite tool, 
which is based on an extension of the TASSER approach 
[52]. 

 Fold recognition and threading methods aim at fitting a 
target sequence to a known structure in a library of folds and 
the model built is evaluated using residue based contact po-
tentials [49]. The method combines three different pair po-
tentials to account for the fact that different scoring functions 
are capable of assigning different target sequences to the 
same template. By identifying structurally similar regions in 
multiple templates, accurate regions of structure prediction 
can be distinguished from less accurate ones. Skolnick and 
co-workers developed and successfully applied threading 
methods in the CASP 5-7 experiments [53, 54]. 

 First principles methods that utilize database information 
can be further classified as (1) fragment-based recombination 
methods; (2) hybrid methods that combine multiple sequence 
comparison, threading, MC optimization with scoring func-
tions, and clustering; and (3) methods that combine informa-
tion from secondary structure and selected tertiary restraints 
with MC optimization or deterministic global optimization 
[49]. In fragment based recombination methods, the funda-
mental principle is that sequence-dependent local interac-
tions direct the chain to sample specific sets of local con-
formers, which are compatible with the biased local con-
formers. Baker and co-workers [61] studied the distributions 
of local structures based on short sequence segments of up to 
10 residues based on the protein database, and developed 
effective approaches that compare fragments of a target to 
fragments of known structures. Once appropriate fragments 
have been identified, they are assembled to a structure, often 
with the aid of scoring functions and optimization algo-
rithms. In hybrid methods, Skolnick, Kolinski and co-
workers [46, 62-64] developed approaches that combine 
multiple sequence comparison, threading, optimization with 
scoring functions, and clustering. The method uses a reduced 
representation lattice model with three or fewer atoms per 
residue [65]. The hierarchical approach TASSER [54] that 
combines template identification through threading, parallel 
hyperbolic MC sampling structure assembly via rearranging 
continuous template fragments, clustering using SPICKER 
[66], and post-analysis using the TM scores, was introduced 
and applied in CASP6 and CASP7. 

 First principles protein structure prediction methods aim 
to use purely physics-based methods, without knowledge 

derived from databases (such as statistical energy functions 
or secondary structure predictors), to explore native struc-
tures and folding processes [46]. This class of methods can 
be applied to any given target sequence using only physically 
meaningful potentials, atomic level representations [49] and 
united residue representations [71]. Once ‘physics-only’ or 
‘physics-mainly’ approaches succeed, the advantages would 
be: the ability to predict conformational changes, such as 
induced fit, a common and important unsolved problem in 
computational drug discovery; the ability to understand pro-
tein mechanisms, motions, folding processes, conformational 
transitions and other situations in which protein behavior 
requires more than just knowledge of the static native struc-
ture; the ability to design synthetic proteins for new applica-
tions or to design foldable polymers from non-biological 
backbones; and the ability to systematically improve protein 
modeling based on the laws of physics [46]. 

 The ab initio methods utilize first principles to predict the 
three dimensional structure of proteins. These methods per-
form iterative conformational changes and estimate the cor-
responding changes in energy. Two main issues to be tackled 
for a successful prediction of protein structure are generation 
of a vast number of conformations and accurate scoring 
functions. 

 The ab initio methodologies have been developed along 
two lines. The first strategy tries to mimic the folding of pro-
teins under physical conditions similar to those observed in 
nature. It involves simulating the protein-folding pathway by 
solving the Newton’s equation of motion (molecular dynam-
ics) [72] whereby a conformation corresponding to the 
global minimum of an appropriate potential energy surface is 
searched [73]. Early studies in this area involved the use of 
simplified lattice based [53, 74-76] or reduced representation 
[77, 78] models of proteins for carrying out simulations. 
These studies were carried out in vacuum. With time, in-
crease in the computational power and efficiency allowed an 
all atom protein molecule to be simulated with the implicit 
treatment of the solvent [79, 80]. Current day compute ca-
pacities allow for microsecond and sub millisecond long 
simulations of the protein molecule with the solvent being 
treated explicitly [81-84]. 

 The second strategy involves the generation of a number 
of conformations followed by evaluation of the models to 
determine the native-like structures. Various methods have 
been employed to sample the configurational space by sys-
tematic [85] or random searches in Cartesian or dihedral 
space [86-89]. Genetic algorithms [90], orthogonal latin 
squares [91, 92], distance geometry [93, 94] and hybrid 
search methods [95-97] have been employed as conforma-
tional search methods. Hierarchical approaches [98, 99], 
simulated annealing [100-103], replica exchange [104], par-
allel tempering [105], Monte Carlo methods [106, 107], 
build up procedures [108-110] and optimization of the scor-
ing functions [111] have also been used for sampling of the 
conformational space of proteins. 

 The ab initio methods are rigorous in calculations but are 
limited by the compute power and time involved which em-
phasizes the need for faster structure prediction methods. 
Also, the accuracy of these methods is dependent upon the 
potential energy functions utilized during simulations [73]. 
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Table 1. Some Popular Web Servers Available Freely Over the Internet for Homology Modeling 

Sl. No. Name of the Web Server (URL) Description 

1 
CPHModels2.0 [55] 

(http://www.cbs.dtu.dk/services/CPHmodels/) 
An automated protein structure homology-modeling server. 

2 

Swiss-Model [56] 

(http://swissmodel.expasy.org/SWISS-

MODEL.html) 

A fully automated protein structure homology-modeling server. 

3 

EsyPred3D [57] 

(http://www.fundp.ac.be/sciences/biologie/urbm/

bioinfo/esypred/) 

An automated server where the alignment is performed via a new alignment strategy using 

neural networks. Alignments are obtained by combining, weighting and screening the 

results of several multiple alignment programs. The final structure is built using the mod-

eling package MODELLER. 

4 

ModWeb [58] 

(http://alto.compbio.ucsf.edu/modweb-

cgi/main.cgi) 

A web server implementation of MODELLER (comparative protein structure modeling by 

satisfaction of spatial restraints). 

5 
Geno3D [59] 

(http://geno3d-pbil.ibcp.fr/) 

Comparative protein structure modelling by spatial restraints (distances and dihedral) 

satisfaction. 

6 
3DJigSaw [60] 

(http://www.bmm.icnet.uk/servers/3djigsaw/) 

An automated server to build three-dimensional models for proteins based on homologues 

of known structure. 

 

Table 2. Some Publicly Available Servers for Fold Recognition 

Sl. No. Name of the Web Server (URL) Description 

1. 
I-TASSER [54] 

(http://zhang.bioinformatics.ku.edu/I-TASSER/) 

An internet service for protein structure and function predictions. Models are built based 

on multiple-threading alignments by LOMETS and iterative TASSER simulations. 

2. Threader [67] (http://bioinf.cs.ucl.ac.uk/threader) 

Physically "thread" a sequence of amino acid side chains onto a backbone structure (a 

fold) and evaluates this proposed 3-D structure using a set of pair potentials and a separate 

solvation potential. 

3. 
LOOPP [68] 

(http://cbsuapps.tc.cornell.edu/loopp.aspx) 

A fold recognition program based on the collection of numerous signals, merging them 

into a single score, and generating atomic coordinates based on an alignment into a homo-

logue template structure. The signals we are using include straightforward sequence 

alignment, sequence profile, threading, secondary structure and exposed surface area pre-

diction. 

4. 
GenTHREADER [69]  

(http://bioinf.cs.ucl.ac.uk/psipred/) 

A combination of methods such as sequence alignment with structure based scoring func-

tions and neural network based jury system to calculate final score for the alignment. 

5. 
LIBRA [70] (http://libra.ddbj.nig.ac.jp/top-

e.html) 

The target sequence and 3D profile are aligned by simple dynamic programming. Accord-

ing to the alignment, sequence is remounted on the structure and its fitness is evaluated by 

psuedo-energy potential. 

 

In contrast, to the ab initio methods are the de novo methods, 
which utilize both the ab initio strategies as well as the data-
base information (directly or indirectly). 

 The Robetta web server by Baker’s group builds a multi-
tude of protein structures from fragments of proteins [112, 
113]. This is followed by clustering the final conformations 
and selection of representative structures of large clusters as 
final models. The ProtInfo web server by Samudrala et al. 
[114] predicts protein tertiary structure for sequences < 100 
amino acids using de novo methodology, where by structures 
are generated using simulated annealing search phase which 

minimizes a target scoring function. Scratch web server by 
Baldi et al. [115] predicts the protein tertiary structure as 
well as structural features starting from the sequence infor-
mation alone. Astro-fold [116] an ab initio structure predic-
tion framework by Klepeis and Floudas employs local inter-
actions and hydrophobicity for the identification of helices 
and beta-sheets respectively followed by global optimization, 
stochastic optimization and torsion angle dynamics. De novo 
structure prediction by simfold energy function with the 
multi-canonical ensemble fragment assembly has been de-
veloped by Fujitsuka et al. [117]. The function has been 
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tested on 38 proteins along with the fragment assembly 
simulations and predicts structures within 6.5 Å RMSD of 
the native in 12 of the cases. The Bhageerath web server by 
Jayaram et al. [118-120] predicts 5 candidate native like 
structures starting with the protein sequence and secondary 
structure information. The ab initio prediction of 3D Struc-
ture of proteins where the inter residue distances are treated 
as random variables and the corresponding probabilities are 
estimated by nonparametric statistical methods and knowl-
edge-based heuristics. has been formulated as Propainor al-
gorithm by Joshi et al. [121]. 

 The ab initio / de novo methods can be successfully em-
ployed in the design of novel protein folds [82, 122-124]. 
These methods are being currently employed in the large 
scale genome annotation projects of small genomes and are 
expected to have a large impact on the future of structural 
and molecular biology. 

 Based on recent CASP events (CASP 5, 6 7 and 8), it 
becomes evident that the first principles methods that utilize 
database information, more specifically, the fragment-based 
methods (Baker and co-workers) and the hybrid methods 
(Skolnick and co-workers; Zhang and co-workers) are at 
present leading in consistency for successful predictions 
primarily for medium resolution structures and for a few 
high resolution structures. Despite several successful me-
dium resolution blind predictions, it is also apparent that 
significant advances are needed for consistent medium reso-
lution predictions particularly in the difficult domain of free 
modeling, when no structurally similar templates can be suc-
cessfully identified [49]. 

 Our understanding of the folding mechanisms has also 
been advanced by theory and simulations. A recent view of 
the protein folding mechanism is the energy landscape model 

[125, 126]. According to this model, all folding protein 
molecules are guided by an energy bias to traverse an energy 
landscape towards the native conformation. The concomitant 
decrease in conformational entropy leads to a funnel-shaped 
energy landscape. The road to the native state from the vast 
majority of individual non-native conformations is downhill 
and is different for each non-native starting conformation. 
Many different folding trajectories for individual protein 
molecules are envisaged and hence, multiple folding path-
ways are expected to be operative. Intermediates, when pre-
sent, are considered as kinetic traps which slow down the 
folding reaction [127]. 

 It is useful to examine the different models of protein 
folding in the context of how proteins begin their search for 
the native conformation. The nucleation model appears inap-
plicable to folding reactions, because it does not predict the 
early intermediate forms seen during the folding of many 
proteins [128]. Secondary structural elements do not appear 
to form unless some stabilizing tertiary contacts are made. 
Hence, a framework model is also unlikely to be a common 
mechanism by which proteins fold [129]. By contrast, the 
observation that a fast (sub-ms) collapse reaction precedes 
the formation of a secondary structure during the folding 
reactions of several proteins [130-132], suggests that many 
proteins indeed fold by the hydrophobic collapse mecha-
nism. Nonetheless, the simultaneous occurrence of collapse 
and structure formation in the case of a few apparently two-
state folding proteins [133, 134] is difficult to explain by the 
classical hydrophobic collapse mechanism. For such pro-
teins, the nucleation-condensation mechanism may better 
describe how folding occurs [135, 136]. 

 Protein folding no longer appears to be an insurmount-
able grand challenge. Current knowledge of folding codes is 

Table 3. A Few  de novo Web Servers Available in the Public Domain for Protein Tertiary Structure Prediction 

Sl. No. Name of the Web Server/Group (URL) Description 

1. 
ROBETTA [112, 113] 

(http://robetta.bakerlab.org) 

De novo Automated structure prediction analysis tool used to infer protein struc-

tural information from protein sequence data. 

2. 
PROTINFO [114] 

(http://protinfo.compbio.washington.edu) 

De novo protein structure prediction web server utilizing simulated annealing for 

generation and different scoring functions for selection of final five conformers. 

3. 
SCRATCH [115] 

(http://www.igb.uci.edu/servers/psss.html) 

Protein structure and structural features prediction server, which utilizes recur-

sive neural networks, evolutionary information, fragment libraries and energy. 

4. ASTRO-FOLD [116] 
Astro-fold: first principles tertiary structure prediction based on overall determi-

nistic framework coupled with mixed integer optimization. 

5. 
ROKKY [117]  

(http://www.proteinsilico.org/rokky/rokky-p/) 

De novo structure prediction by the simfold energy function with the multi-

canonical ensemble fragment assembly. 

6. 
BHAGEERATH [118-120] 

(http://www.scfbio-iitd.res.in/bhageerath) 

Energy based methodology for narrowing down the search space of small globu-

lar proteins. 

7 PROPAINOR [121] 

The ab initio prediction of 3D Structure of proteins where the inter residue dis-

tances are treated as random variables and the corresponding probabilities are 

estimated by nonparametric statistical methods and knowledge-based heuristics. 
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sufficient to guide the successful design of new proteins and 
new materials. Current computer algorithms are now predict-
ing the native structures of small simple proteins remarkably 
accurately, contributing to drug discovery and proteomics 
[46]. 

4. MEMBRANE PROTEIN BIOINFORMATICS 

 Membrane proteins are crucial players in the cell and 
take centre stage in processes ranging from basic small-
molecule transport to sophisticated signaling pathways [137]. 
Many are also prime contemporary or future drug targets, 
and it has been estimated that more than half of all the drugs 
currently on the market are directed against membrane pro-
teins, which are responsible for the uptake, metabolism, and 
clearance of these pharmacologically active substances [138, 
139]. Although analyses show that ~30% of the proteins 
coded in human genome are membrane proteins [140], it is 
still frustratingly hard to obtain high-resolution three-
dimensional structures of membrane proteins [137], (Table 
4). Even if the number of experimentally known membrane 
protein structures is on the rise [141, 142], methods for pre-
dicting the three dimensional structures of membrane pro-
teins will need many more years. Therefore there exists 
enormous incentive for computational and theoretical studies 
of membrane proteins. 

4.1. What the Sequences Tell 

 For the helix-bundle membrane proteins, the typical 
transmembrane segment is formed by a stretch of predomi-
nantly hydrophobic residues long enough to span the lipid 
bilayer as an -helix [149-153]. The early topology predic-
tion methods were consequently little more than plots of the 
segmental hydrophobicity (averaged over 10-20 residues) 

along the sequence [154-156]. With more sequences came 
the realizations that aromatic Trp and Tyr residues tend to 
cluster near the ends of the transmembrane segments 
[157,158] and that the loops connecting the helices differ in 
amino acid composition, depending on whether they face the 
inside or outside of the cell [159-161]. More recent analyses 
have focused on the higher-than-random appearance of se-
quence motifs, such as the GxxxG-motif in transmembrane 
segments [162, 163] as well as other periodic patterns within 
the membrane helices [164], with the aim of providing in-
formation that may help in predicting helix-helix packing 
and 3D structure. 

4.2. Topology Prediction Methods 

 There are a number of different topology prediction 
methods available today. All methods rely on hydrophobicity 
analyses to predict the number of TMHs and most methods 
use the positive-inside rule to deduce the orientation of the 
protein relative to the membrane. The aromatic residues 
Tryptophan and Tyrosine are often incorporated into the al-
gorithm in order to better define the boundaries of the 
TMHs. The topology prediction methods then generate a 
topology model that includes: (i) how many TMHs the pro-
tein has, (ii) on which side of the membrane the loops and 
tails are located, (iii) the boundaries of the membrane and 
non-membrane domains [165]. TMHMM has been ranked as 
one of the top-performing topology predictors in several 
evaluations, with a success rate of 55-75% [166-170]. 

4.3. 3D Predictions 

 For membrane proteins, prediction methods allow us to 
predict (i) if a protein belongs to the class of -helical mem-
brane protein, (ii) topology models, (iii) re-entrant loops, (iv) 

 

 

 

Fig. (2). Statistics from the Protein Data Bank on Proteins. 
 

Table 4. Some Useful Membrane Protein Structure Resources 

Sl No Membrane Protein Structure Resources URL 

1 
Progress of membrane protein structure determination 

[143]. 
http://blanco.biomol.uci.edu/MP_Structure_Progress.html 

2 Martin Caffrey's Membrane Protein Data Bank [144]. http://www.mpdb.ul.ie/ 

3 Bilayer Insertion of Membrane Proteins [145]. http://sbcb.bioch.ox.ac.uk/cgdb/ 

4 
Protein Data Bank of Transmembrane Proteins [146, 

147]. 
http://pdbtm.enzim.hu/? 

5 
TMFunction:  database for functional residues in mem-

brane proteins [148] 
http://tmbeta-genome.cbrc.jp/TMFunction 
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presence of a signal sequence and (v) organelle localization 
[137]. To date there is no reliable ab initio 3D prediction 
method that is publicly available and no straight forward 
schemes to apply to membrane proteins because the different 
environment introduced by the membrane has to be modeled 
in some way, and because most membrane proteins are sig-
nificantly larger than the globular proteins predicted so far 
[137]. Therefore, currently there is no general algorithm that 
works from protein sequence information only. 

 An interesting attempt to model all G-protein-coupled 
receptors (GPCRs) of the human proteome was made by 
Skolnick and coworkers [140] using the TASSER algorithm. 
Although the accuracy of the predicted rhodopsin structure 
was quite good, the correctness of the GPCR structures can-
not be verified until more structures are available [124]. RO-
SETTA membrane folding algorithm was used to model the 
closed and open states of a voltage-dependent potassium 
channel [171]. 

 While ab initio structure modeling can best predict the 
overall fold of a protein, homology modeling of membrane 
proteins is still in its infancy because very few structures are 
known. When a template is available, homology models of 
membrane proteins are comparable in quality to those that 
can be made for globular proteins, i.e., when the sequence 
identity between the template and the target is >30%, one 
can expect the root mean-square deviation between the mod-
eled and the correct structure to be < 2 Å in the transmem-
brane regions [172]. 

5. HUMAN PROTEOME 

 Completion of sequencing of the human genome [173, 
174] has ushered in an era of characterizing genes and their 
gene products or proteins in great detail. The Human Protein 
Reference Database (HPRD) is a novel comprehensive pro-
tein information resource that depicts various features of 
proteins such as domain architecture, post-translational 
modifications, tissue expression, molecular function, subcel-
lular localization, enzyme-substrate relationships and pro-
tein-protein interactions [175, 176]. With the inclusion of 
most of the human protein sequences, HPRD, a community 
driven database has grown into an integrated knowledgebase 
for genomic and proteomic investigators. [176]. This data-
base will assist in biomedical discoveries by serving as a 
resource of genomic and proteomic information and provid-

ing an integrated view of sequence, structure, function and 
protein networks in health and disease [175] (Fig. 3). 

6. PROTEIN-PROTEIN INTERACTIONS 

 Protein-protein interactions (PPI) are essential for almost 
all cellular functions. Proteins seldom carry out their func-
tion in isolation; rather, they operate through a number of 
interactions with other biomolecules. Experimental elucida-
tion and computational analysis of the complex networks 
formed by individual protein-protein interactions (PPIs) is 
one of the major challenges in the post-genomic era. Protein-
protein interaction databases have become a major resource 
for investigating biological networks and pathways in cells 
[177]. A substantial fraction of eukaryotic proteins contains 
multiple domains, some of which show a tendency to occur 
in diverse domain architectures and are considered mobile or 
promiscuous. These promiscuous domains are typically in-
volved in protein-protein interactions and play crucial roles 
in interaction networks, particularly those contributing to 
signal transduction [178]. Studies of protein-protein interac-
tion networks across species have strong potentiality in the 
field of molecular evolution since protein-protein interac-
tions are central for function and control and as well as re-
flect cohesive efforts in the organization of the complicated 
interactomes [179, 180]. The protein-protein interaction net-
works reveal that most of the proteins (the network nodes) 
are connected to relatively fewer, highly connected proteins 
termed as the hub proteins [176]. Further studies revealed 
that in a protein-protein interaction network, hub proteins 
that physically interact with most or all of their partners si-
multaneously are designated as party hubs and those that 
bind their different partners at different times or locations are 
the date hubs [181]. Protein–protein interfaces are highly 
attractive targets for drug discovery because they are in-
volved in a large number of disease pathways where thera-
peutic intervention would bring widespread benefit [182]. 

 A very recent review article by Tuncbag et al., [183] 
summarizes the available tools and web servers for analysis 
of protein-protein interactions and interfaces. This review 
provides a comprehensive and organized list of the available 
databases and web servers of protein folding sites and their 
characteristics outlining how the tool was constructed, its 
advantages and drawbacks. These resources can be used to 
analyze the physico-chemical properties of interfaces and 

 

 

 

 

Fig. (3). Statistics in the Human Protein Reference Database (http://www.hprd.org/). 
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differentiate between biological complexes and crystal con-
tacts and predict binding sites in protein structures and of the 
docked structures of two individual proteins. A combination 
of such resources is expected to help biologists explore pro-
tein interactions, relate these to cellular processes and design 
drugs to target the druggable sites. 

 MPIDB (Microbial protein interaction database) is a new 
web resource, which is a repository of all known physical 
microbial interactions [184] that provides unified access to 
available microbial interaction data. The microbial interac-
tions have been manually curated form the literature or im-
ported from other databases. Interactions in MPIDB are fur-
ther supported by 8150 evidences based on interaction con-
servation, co-purification and 3D domain contacts. 

6.1. Flexibility in Protein-Protein Interactions 

 Flexibility is of overwhelming importance for protein 
function, and the changes in protein structure during interac-
tions with binding partners can be dramatic [185]. The flexi-
bility of a protein may result in either subtle changes as when 
a few amino acid side chains of an enzyme move to bind a 
small substrate, or in more dramatic changes as when the 
folding of certain proteins is facilitated by the presence of 
the appropriate ligand. An inverse relationship between pro-
tein stability and the biological function of both enzymes and 
protein hormones has been described, underscoring the fact 
that function necessitates flexibility [186, 187]. In terms of 
medicinal chemistry and drug discovery, even the angio-
tensin-converting enzyme inhibitor captropil, credited as the 
first drug discovered using a protein-binding site, binds to a 
protein (carboxypeptidase A) that was known to be highly 
flexible [188]. 

7. METABOLIC NETWORKS 

 There is current interest in the processes underlying the 
biology of network because these offer insight into the orga-
nization and evolution of life [189]. Elucidation of cellular 
metabolism, one of the greatest achievements of science, is 
clearly the best-studied biological network. It represents a 
complex collection of enzymatic reactions and transport 
processes that convert metabolites into molecules capable of 
supporting cellular life [190]. A very recent study has un-
covered the origins and evolutionary patterns of modern me-
tabolism. Using phylogenomic information linked to the 
structure of metabolic enzymes, Mittenthal and his cowork-
ers have sorted out recruitment processes and discovered that 
most enzymatic activities were associated with the nine most 
ancient and widely distributed protein fold architectures. 
Their analysis of newly discovered functions showed enzy-
matic diversification occurred early, during the onset of the 
modern protein world. Their observation of phylogenetic 
reconstruction exercises, strongly suggested that metabolism 
originated in enzymes with the P-loop hydrolase fold in nu-
cleotide metabolism, probably in pathways linked to the 
purine metabolic network [191]. 

 The most challenging issue in life sciences today is the 
study of metabolic pathways for the identification of suitable 
drug targets against infectious agents. Association of targets 
with less number of metabolic pathways tends to reduce the 
chance of unwanted interference with other processes and 
these targets are more likely to be successfully discovered 

and explored for generating a higher number of clinical 
drugs [192]. 

8. POTENTIAL DRUG TARGETS BASED ON SIMPLE 

SEQUENCE PROPERTIES 

 Although great efforts have been exerted on drug re-
search and development during the past decades, ~324 drug 
targets have been identified for clinically useful drugs to date 
[193], which indicates that current pharmaceutical industry 
actually relies on only a small pool of drug targets, compared 
to the large number of proteins available in human genome 
[194] and those of the pathogens. A significant number of 
drugs that fail in the pipeline of modern drug discovery can 
be attributed to the wrong drug target definition at the early 
preclinical stages [195]. In a recent study, a drug target pre-
diction method based on support vector machine has been 
developed. Independent of homology annotation and protein 
3D structures, the current method employs simple physico-
chemical properties based on primary protein sequence to 
construct the SVM model. The method can successfully dis-
tinguish known drug targets from putative non drug targets at 
an accuracy of 84% in 10-fold cross-validation test. Limita-
tions of this method are, only human proteins are covered 
and only protein drug targets are taken into account [182]. 
Bhakeet and Doig [195] used wider range of sequence prop-
erties and reported eight key properties of human drug tar-
gets that differed significantly from non-drug targets and 
applied these to identify new potential drug targets. The 
properties have been summarized as druggability rules in the 
Table 5. They then used support vector machines to make a 
classifier to distinguish targets from non-targets using the 
eight key features calculated form protein sequences. Their 
method identified 23% of the human proteins with target-like 
properties, some of which have been annotated by primary 
EC number, giving 17 oxidoreductases, 12 transferases, 44 
hydrolases, 6 lyases, 5 isomerases and no ligases. 

 Structure-based drug design is playing a growing role in 
modern drug discovery, with numerous approved drugs trac-
ing their origins, at least in part, to the use of structural in-
formation from X-ray-crystallography or nuclear magnetic 
resonance analysis of protein targets and their ligand-bound 
complexes [196]. Protein structure information is the bread 
and butter of structure-based drug discovery. An explosion in 
technological and computational advances in structural ge-
nomics projects have substantially increased the number of 
protein structures of hundreds or thousands of medically 
relevant targets from infectious disease organisms. This new 
information provides both academic and for-profit scientists 
with an unprecedented opportunity to accelerate the devel-
opment of new and improved chemotherapeutic agents 
against these pathogens [196]. 

 One of the major challenges in drug development is the 
accurate assessment of human drug toxicity [197]. Given the 
very high attrition rates in drug discovery besides the cost 
and time factors [198], there is also an ethical issue of caus-
ing harm to the patient population [197]. For that reason, in 
recent years pharmaceutical companies have brought toxicity 
testing, as well as ADME (absorption, distribution, metabo-
lism, excretion) studies, early on in the drug development 
process [199]. The ultimate here would be to use in silico 
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methods to predict toxicity even before a drug candidate is 
being synthesized [199]. 

 The existing commercially available in silico tools for 
predicting potential toxicity issues can be roughly classified 
into two groups. The first group uses expert systems that 
derive models on the basis of abstracting and codifying 
knowledge from human experts and scientific literature. The 
second group relies primarily on the generation of descrip-
tors of chemical structures and statistical analyses of the rela-
tionships between the descriptors and toxicological end-
points [200]. 

9. DISORDERED PROTEINS 

 Interest in disordered proteins has swelled as a result of 
the realization that such proteins are unexpectedly and per-
haps astonishingly common in human and other genomes 
[201-203]. Disordered proteins are associated with a variety 
of biological functions, many of them intimately related to 
human disease [204-206]. Database analysis indicates that 
proteins that are involved in eukaryotic signal transduction 
or that are associated with cancer have an increased propen-
sity for intrinsic disorder [207]. A signature of probable in-
trinsic disorder is the presence of low sequence complexity 
and amino-acid compositional bias, with a low content of 
bulky hydrophobic amino acids (Val, Leu, Ile, Met, Phe, Trp 
and Tyr), and a high proportion of particular polar and 
charged amino acids (Gln, Ser, Pro, Glu, Lys, Gly and Ala) 
[208, 209]. The presence of such regions in transcriptional 
regulatory proteins was recognized more than 25 years ago 
[210]. Many of these regions function in transcriptional acti-
vation and they are often classified according to their amino 
acid composition – for example, there are glutamine-rich, 
proline-rich and acidic activation domains [211]. A number 
of computer programs are now available for the prediction of 
unstructured regions from amino acid sequences and Table 6 
summarizes some popular disorder predictors, their URL 
addresses and the principles they are based on. 

 Many disordered proteins do adopt more highly ordered 
conformations upon interactions with other cellular compo-
nents [222]. A role for induced protein folding in sequence-
specific DNA binding was proposed more than a decade ago 
by Spolar and Record [223], on the basis of the large heat-

capacity changes that result from DNA-protein complex 
formation. Some of these processes involve the large-scale 
folding of entire domains – for example, the basic region of 
the basic leucine-zipper (bZip) DNA-binding domain [224] – 
whereas others involve the folding of local disordered loops 
or linkers between folded domains [225]. Many RNA-
binding proteins also contain unstructured regions [226]. For 
example, the ribosomal protein L5 seems to associate with 
5S ribosomal RNA by mutual induced-fit mechanism: both 
RNA and protein are significantly more structured in the 
complex than in the free state [227]. 

10. THE SEQUENCE-STRUCTURE RALATIONSHIP 

AND PROTEIN FUNCTION PREDICTION 

 The knowledge of the relationship between structure and 
function, combined with a rise in the number of structures 
solved with no biochemical annotations, has motivated the 
development of computational tools for the prediction of 
molecular function using sequence and structural informa-
tion [228, 229]. Despite methodological improvements in 
this area, determining function directly from tertiary struc-
ture has proven to be a difficult problem to crack [230]. 
Much of the problem in assigning function from structure 
comes from functional convergence, where although a stable 
structure is required to perform many functions, it is not al-
ways necessary to adopt a particular structure to carry out a 
particular function – any one of the several folds might be 
equally as good as any other [231-235]. Despite the com-
plexities unique to proteins, the principal means by which 
protein function is defined remains rooted in a set of labels 
derived from gene ontology [221]. The most significant limi-
tation of gene ontology annotations when applied to proteins 
is that GO terms are non-positional and there is no defined 
relationship between, metal-binding sites in crystal structure 
and concomitant GO terms [230]. The Protein Feature On-
tology (PFO [236]) is an important new development that is 
likely to be very useful in bridging this gap. The PFO has 
been developed to provide a structured controlled vocabulary 
for features on a protein sequence or structure and comprises 
~100 positional terms, now integrated into the Sequence On-
tology (SO) and 40 non-positional terms which describes 
features relating to the whole protein sequence [236]. The 

Table 5. Sequence Properties as Druggability Rules 

Property p(Target) p(Non-Target) 

Hydrophobicity > -142.4 0.66 0.60 

Length > 550 amino acids 0.39 0.29 

SignalP motif present 0.45 0.27 

No PEST motif 0.21 0.35 

More than 2 N-glycosylated amino acids 0.52 0.38 

Not more than one O-glycosylated Ser 0.16 0.24 

Mean pI < 7.2 0.37 0.51 

Membrane location 0.49 0.24 
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Distributed Annotation System (DAS [237]) specification 
has been modified to incorporate PFO term codes along with 
accompanying evidence codes and represents an important 
step towards combining disparate function annotation 
sources which should enable many future developments in 
reliable function prediction [238]. 

11. CHEMICAL LOGIC OF PROTEIN SEQUENCES 

 Protein nucleic acid recognition and protein folding are 
among some of the unsolved problems in molecular biophys-
ics/molecular biology and at the heart of these reside interac-
tions involving amino acid side chains. It is likely that a new 
view of amino acid side chains may benefit this field. A 
novel chemical analysis of amino acid side chains reported 
recently [239] explains the chemical logic of protein se-
quences. That only 20 amino acids occur naturally account-
ing for the structural and functional diversity of proteins is a 
consequence of the action of a symmetry group. The analysis 
identifies the presence of hydrogen bond donor groups, pres-
ence of sp3 hybridized  carbons, absence of  carbons and 
linearity as properties central to side chain design and quan-
tify the chemical logic of protein sequences. Naturally occur-
ring proteins are dominated by amino acids with sp3 hybrid-
ized  carbons and short side chains. From a chemistry point 
of view, the 20 amino acid side chains constitute a near 
comprehensive complete chemical template (monomer) li-
brary to build polymers with the diversity of functions. From 
a biology perspective, the 20 amino acids contain all the in-
formation necessary for the regulation of gene expression 
involving protein-nucleic acid interactions. It is conceivable 
that the chemical model presenting a clue to the language of 

amino acids could facilitate a better understanding of the 
structure and function of proteins and structure based drug 
design efforts. 

CONCLUSIONS 

 Despite much effort in structural genomics, the amount 
of protein structures determined by time consuming and ex-
pensive experimental methods is significantly smaller when 
compared to large-scale DNA sequencing methods. As ge-
nome-sequencing projects provide biologists with ready ac-
cess to rapidly increasing pool of protein sequences, there 
will be a growing demand for developing advanced compu-
tational methods for predicting structure and function from 
sequence information only without knowing the structural 
data. Development of computational technologies that enable 
the complex web of relationships that characterize protein 
structure/function space will lead to a far more productive 
exploitation of the information contained in se-
quence/structure/function databases than is currently possi-
ble. The implications of such an approach on the impact of 
structural genomic initiatives could be enormous. Develop-
ment of smarter algorithms and sophisticated automated 
computer modeling approaches will enlarge the scope of 
model-able proteins for structural genomics. Based on the 
recent CASP events (CASP 7, 8), a competition that has of-
ten been called as the “Olympic Games of Protein Structure 
Prediction” Zhang server constructed based on first princi-
ples and hybrid methods at present is leading in consistency 
for successful predictions primarily for medium resolution 
structures and for a few high resolution structures. The even-
tual solution to the problem is however free modeling con-

Table 6. Some Popular Disorder Predictors, Their URL Addresses and the Principles They are Based on 

Sl. No. Predictor URL Principle/Method 

1 DisEMBL [212] http://dis.embl.de Neural Network 

2 DISOPRED2 [213] http://bioinf.cs.ucl.ac.uk/disopred Support vector machines, neural networks 

3 FoldUnfold [214] 
http://skuld.protres.ru/~mlobanov/ogu/og 

u.cgi 
Amino acid propensity 

4 FoldIndex [215] http://bip.weizmann.ac.il/fldbin/findex Amino acid propensity 

5 GlobPlot [216] http://globplot.embl.de 
Amino acid propensity, preference for or-

dered secondary structure 

6 IUPred [217] http://iupred.enzim.hu 

Estimated 

pairwise 

interaction energy 

7 NORSp [218] 
http://cubic.bioc.columbia.edu/services/N 

ORSp 
Secondary structure propensity 

8 PONDR VSL2 [219] 
http://www.ist.temple.edu/disprot/predic 

torVSL2.php 

Support vector machines with non linear 

kernel 

9 PreLink [220] http://genomics.eu.org/spip/PreLink 
Amino acid propensity, hydrophobic cluster 

analysis 

10 Ucon [221] 
http://www.predictprotein.org/submit_uc 

on.html 
Amino acid contact potential 
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sidered to be a holy grail of the computational molecular 
biology. The best current free modeling softwares so far in 
business is from the Baker’s group (University of Washing-
ton). However, free modeling methods are not advanced 
enough for routine medical applications as the models are 
not experimental structures determined with known accuracy 
but are predictions, which heavily depend on model quality. 

 Membrane proteins constitute ~30% of all proteins and 
reliable methods to predict the structure of membrane pro-
teins are crucial as experimental determination of high reso-
lution membrane protein structures remain very difficult 
given their complexity and size. The current understanding 
and representation of membrane protein topology as a simple 
string of membrane spanning -helices and ß-sheets does not 
fully capture the structural diversity observed in membrane 
proteins. Faster computational protocols to map membrane 
interactome should prove useful to guide and rationalize ex-
perimental investigations and a conglomeration of dry and 
wet lab approaches should hold a key to the answer. 

 New functional proteins are built on advances in model-
ing and structure prediction. Current computational design 
methodology can provide close to atomic resolution predic-
tions [240] and can be useful in unanticipated ways, includ-
ing improvement of catalytic efficiency, creating therapeuti-
cally useful proteins. Protein and peptide products for thera-
peutic use include a very diverse range of products as hor-
mones, growth factors, cytokines, vaccines and monoclonal 
antibodies. There have been a number of successful exam-
ples in which computer-predicted models were used to guide 
the design of new drug [241]. Of note, Becker et al. used the 
predicted structural models of the serotonin receptors to 
screen a compound library [242]. 

 A flood of data is emerging from genome research, in-
cluding sequence data on proteins. To help science keep pace 
with this flow of knowledge, biophysicists, biochemists and 
structural biologists across the world have been developing 
tools and resources for management of data and the integra-
tion of information from varied sources. HPRD is an online 
repository for experimentally derived information about the 
human proteome. This rich resource can be browsed and 
searched for protein-protein interactions, post translational 
modifications and tissue expression. Knowledge of protein 
interactions is crucial for elucidating their functional role. It 
is also essential in correcting biological dysfunction related 
to diseases. One of the current drawbacks of PDB holdings is 
the low coverage of crystallized protein complexes, which 
makes structure based prediction methods for protein-protein 
interactions a pressing necessity. Metabolic networks have 
evolved to be exceptionally robust, adopting organizational 
structures. The relationship between metabolic structure and 
function is an important question for researchers in areas 
such as bioengineering and disease treatment, where one 
goal is to manipulate metabolic network structure in order to 
obtain desired behaviors. Drug target discovery has received 
much attention in both academia and pharmaceutical indus-
try. With novel methods discovered everyday with high pre-
diction accuracies for target identification from the sequence 
information alone would fasten modern drug discovery with 
reduction in time and cost. 

 Computational analyses for structure-function prediction 
based on sequence information are increasingly becoming an 
essential and integral part of modern biology. With rapid 
advances in the area, there is a growing need to develop effi-
cient versatile bioinformatics software packages which are 
hypotheses driven. ‘Gene to Drug’ developed at SCFBio, IIT 
Delhi is an attempt in this pursuit and an integration of het-
erologous applications of different technologies developed 
in-house and their translation into in silico products that cater 
to a majority of bioinformatics applications and how grid 
services and high performance computing platforms can be 
harnessed to bridge the gap between biomolecular sequence, 
structure and function [243]. 

 The topics presented here have glossed over many de-
tails. In seeking to prompt a fresh mindset, we were moti-
vated to frame the whole picture in sweeping strokes for 
which we seek the indulgence of the readership. 
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ABBREVIATIONS 

CASP = Critical assessment of methods of protein 
structure prediction 

DAS = Distributed Annotation System 

GO = Gene Ontology 

GPCR = G protein coupled receptor 

HPRD = Human Protein reference database  

MD = Molecular Dynamics 

MPIDB = Microbial protein interaction database 

PDB = Protein data bank 

Pfam = Protein families 

PFO = Protein feature ontology 

PIR = Protein information resource 

PIR-PSD = Protein information resource – protein se-
quence database 

PPI = Protein protein interactions 

PRINTS = Compendium of protein fingerprints 

ProDom = Protein domain 

PROSITE = Database of protein domains, families and 
functional sites 

ProtoMap = Automatic classification of protein se-
quences and hierarchy of protein Families 
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ROSETTA = Server for protein tertiary structure predic-
tion  

SCOP = Structural Classification of proteins 

SO = Sequence ontology 

TASSER = Server for protein tertiary structure predic-
tion based on threading and assembly re-
finement 

TMHs = Tranmembrane helices 

TMHMM = Server for prediction of transmembrane 
helices in proteins 
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