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14 DNA–Drug Interactions: 
A Theoretical Perspective

B. Jayaram, Tanya Singh, and Marcia O. Fenley

The increasing availability of genomic information coupled with the advances in 
predictive computational tools for characterizing structure, electrostatics, and 
dynamics of DNA and for estimating DNA–ligand binding free energies usher in an 
era of DNA-targeted computer-aided drug discovery to combat infectious diseases 
and noncommunicable disorders, with higher levels of reliability.

14.1 IntroductIon

DNA as a drug target—be it the DNA of humans, as in cancers, or that of infectious 
agents—proves attractive due to the availability of the well-studied three-dimensional 
(3D) DNA structures and the predictability of their accessible chemical functional 
groups. However, the number of known DNA-based drug targets is still very limited 
in comparison to the protein-based drug targets (Figure 14.1). The number of available 
structures of DNA–drug complexes is also small relative to protein–drug complexes 
deposited in the RCSB database [1] (as shown in Figure 14.1 and Table 14.1), which 
indicates a heavy underrepresentation of DNA in the structural databases. Two con-
current developments, viz., increasing the availability of genomic sequences and 
advances in drug delivery systems, are expected to change this scenario drastically 
in the coming years.
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318 Methods for Studying DNA/Drug Interactions

14.1.1 Drug TargeTs from genomic informaTion

Figure 14.2a and b helps explain how the knowledge of genomic sequences can aid 
in identifying drug targets. For example, based on the knowledge of the genomic 
information of the malarial parasite P. falciparum, three DNA sequences, viz., 
(a) TGCATGCA, (b) GTGTGCACAC, and (c) GCACGCGTGC, have been identified 
as regulatory and essential for the functioning of the organism [6,7]. Naturally, if drugs 
are to be developed against these sequences, one wishes to know the frequency with 
which these sequences occur in humans in order to ensure that the drugs do not hamper 
the normal functioning of humans. The availability of genomic sequences, preferably 
with annotation, makes these choices feasible.

14.1.2  opTimum size of Dna as a TargeT anD The  
Drugs for specific BinDing

The genomic sequences also bring to light other considerations. Figure 14.2a 
suggests that drugs have to bind to at least 16-mers to 18-mers or longer DNA 
sequences in order to ensure selectivity. Examination of the genomic sequences in 
humans (Figure 14.2b) indicates that the drugs have to cover at least 18 base pairs 
(bp) in order to uniquely bind to their targets with both high affinity and specificity. 
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FIgure 14.1 Different therapeutic classes of drug targets for drugs in the market [1–4]. 
The red bar indicates the total number of known targets for that class and the green bar indi-
cates the number of three-dimensional structures available in the RCSB database [1] for that 
class. The targets correspond to approved drugs.
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319DNA–Drug Interactions: A Theoretical Perspective

These numbers are reminiscent of the classical genetic switch [8] of the λ cro and 
λ repressor-operator systems wherein the operators are 17 bp long. Similarly, 
although each zinc-finger DNA-binding motif covers only 3 bp, multiple zinc-
finger motifs bind in tandem to cover longer DNA sequences for transcriptional 
activation/regulation [9–15].

The above discussion brings to focus the optimal dimensions a drug molecule 
must possess for specific binding to its DNA target. The axial distance of 20 bp 
(approximately two turns) of B-DNA is ∼68 Å. The contour length along the grooves 
is longer (∼90 Å). If the designed drug is a groove binder, its end-to-end distance has 
to be > 90 Å. Typical lengths of some known DNA-binding ligands (drugs) are 
shown in Table 14.2 along with the target DNA base sequences. This data suggests 
the need to design drugs that are at least four times longer than netropsin, with overall 
molecular weights in the range of 1600–1800 Da, to ensure specific binding to 
unique DNA targets (Figure 14.3).

The length considerations of DNA-targeted drugs bring to fore nonconformity 
with Lipinski’s rules [21,22] and drug delivery issues. A possible unexplored solution 
that has considerable promise is the design of monomeric drugs that bind to shorter 
sequences but could then form homo- or heterooligomeric drug(s) when binding to 
its DNA target. We propose that, for instance, four netropsin-like molecules with 
different sequence specificities and with an end-on coupling can easily cover any 
unique target sequence akin to the well-known binding of proteins to DNA as either 
dimers [8] or higher-order oligomers [23]. Recent advances in nano-biotechnology are 
expected to overcome hurdles that are still present in the delivery of drug molecules 
to their target site. These possibilities strongly affirm the potential for the success of 
novel drugs targeted to DNA.

Other design considerations, apart from length/size, include the chemical infor-
mation content in the DNA grooves. The minor groove has a lower informational 
content than the major groove in the sense that both AT and TA base pairs project 
electronegative atoms into the minor groove. There exists a subtle polarity of the elec-
trostatic potentials between GC and CG sequences in the minor grooves. Most proteins 

Q2

table 14.1
number of three-dimensional structures of dna and dna–drug 
complexes reported in the nucleic acid database (ndb) [5]

number type of complex/binding
total number of Pdb and  

ndb entries

1 DNA 2689

2 DNA minor groove binders 109

3 DNA major groove binders 11

4 DNA intercalators 148

5 DNA–protein complexes 1692

6 Protein–ligand complexes 22,312 

Note: The protein–ligand statistics was taken from the RCSB database [1].
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320 Methods for Studying DNA/Drug Interactions

target the major groove. However, most known drugs target the minor groove 
enabling a snug fit between the binding partners. The wider major groove requires 
bulkier drugs with larger molecular weights. Cationic drugs have been the popular 
choice for binding to AT-rich minor groove regions while intercalators seem to 
prefer GC steps [24] (see, however, Ref. 25). One obvious choice apart from Dervan’s 
architectures [26–29] is to bind to the minor groove in AT-rich regions and inter-
calate into GC regions. A rational combination of this strategy to cover the desired 
DNA sequences of any length is yet to emerge.

14.2 background and technIque

14.2.1 Dna sTrucTure-BaseD Drug Discovery

In the absence of x-ray crystallographic or NMR structures of target DNA sequences, 
drug design efforts require sophisticated molecular simulation techniques to capture 
the subtle base sequence effects on the groove widths and the spatial disposition of the 
chemical functional groups. Also, very accurate computational tools for determining the 

Lo
g 1

0  
  o

f f
re

qu
en

ci
es

  

Number of base pairs 
0 2 4 6 8 10 12 14 16 18

8

7

6

5

4

3

2

0

1

TGCATGCA_plasmodium

TGCATGCA_humans

GTGTGCACAC_plasmodium

GCACGCGTGC_plasmodium

GCACGCGTGC_humans

GTGTGCACAC_humans

(a)

FIgure 14.2 (a) Logarithm of the frequencies of the occurrence of base sequences of 
lengths 4–18 base pairs in Plasmodium falciparum and in humans embedding a regulatory 
sequence TGCATGCA (shown in green), GTGTGCACAC (blue), and GCACGCGTGC 
(orange) or parts thereof, of the plasmodium. The solid lines and the dashed lines correspond 
to humans and plasmodium, respectively. Curves lying between 0 and 1 on the log scale indicate 
occurrences in single digits. (b) Logarithm of the frequencies of occurrence of base sequences 
from 3 to 18 base pairs in humans embedding a regulatory sequence AAGCTGTCATTA or 
parts thereof of a cancer causing CAGE1 gene [16], GACTGAGTCAA or parts thereof of a 
cancer causing BRCA1 gene [17], CTCTAAGTCAT or parts thereof of a cancer causing gene 
ABCB1 [18], GATATGTTAAAGC or parts thereof of a cancer causing gene ABCB5 [19], 
and CTTCTGGGAA or parts thereof of a cancer-causing gene ABI1 [20].
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electrostatic potentials of DNA with different base sequences are necessary for reliable 
drug design efforts. Fortunately, these have become available in the recent years.

The Ascona B-DNA consortium [30,31] was formed with the objective of devel-
oping state-of-the-art molecular dynamics simulation protocols to describe DNA 
accurately in aqueous media and the simulation results vis-à-vis 3D structures in the 
PDB/NDB databases are very encouraging. Statistical mechanical theory that can 
utilize the molecular simulation trajectories to determine the energetics of binding 
has also been worked out (see Appendix). Empirical potential functions to analyze 
single structures/snapshots of molecular dynamics or Monte Carlo simulations that 
yield results in good correlation with pertinent experimental data have also been 
developed [32–38].

Advances in finite difference Poisson–Boltzmann (FDPB) methodology [39–44] and 
the analyses of electrostatic potentials of DNA [45–48] obtained as solutions to the 
nonlinear PB equation [39] now make it possible to elucidate potential recognition/bind-
ing sites that result from the base sequence and/or from the phosphodiester backbone. 
The computed surface electrostatic potential profiles of DNA and its cationic drug 
partner allow one to assess the electrostatic potential complementarities from a quali-
tative perspective. However, the development of more quantitative electrostatic 
potential metrics is vital for drug design.

14.2.2 energeTics of Dna–Drug BinDing

A drug molecule that competes with a regulatory protein has to generate a binding free 
energy in the range of –9 to –15 kcal/mol [49]. Minor groove binders have to achieve 
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323DNA–Drug Interactions: A Theoretical Perspective

this via a snug fit and electrostatic complementarity without much structural distortion 
and intercalators via stacking in order to overcome the energy penalty associated with 
local unwinding/structural adaptation of the DNA. In order to design drugs that target 
DNA with enhanced binding specificity and affinity, many groups have proposed that 
a better understanding of different noncovalent interactions, such as van der Waals, and 
electrostatics along with structural information is warranted. An energy component 

+ +

[NaxDNA]aq

[NaxDNA*]aq

[NaxDNA*]vac

[Drug*Clp]aq

[Drug*Clp]vac

[DrugClp]aq [NayDNA*Drug*Clq]aq +    [(x-y)Na(p-q)Cl]aq

[NayDNA*Drug*Clq]vac +    [(x-y)Na(p-q)Cl]vac

+     ΔGo  

1 
2                                    3

                            

7

4                                   5 

6 

FIgure 14.3 A thermodynamic cycle to study the energetics of DNA–drug binding. The 
formation of the DNA–DAPI complex (PDB id: 1D30), a typical minor-groove-binding drug–
DNA complex is shown. The electrostatic potential of the face of the drug that contacts the minor 
groove is very positive (blue and green) as opposed to the remaining surface, which is mostly 
neutral. Note that the most negative (red and yellow) electrostatic potential of DNA for this 
AT-rich sequence is in the deep and narrow minor groove rather than along the sugar–phosphate 
backbone. This strong negative potential originates from both the anionic sugar–phosphate 
backbone and electronegative O2 of thymine and N3 atoms of adenine. The binding position 
of the drug is shown. The curved surface of the drug (in blue sticks) fits tightly in the minor 
groove of the DNA. The color scheme used in these surface electrostatic potential maps is as 
follows: yellow is the most negative and green is the most positive. White is neutral. Red and 
blue represent negative and positive electrostatic potentials, respectively.
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324 Methods for Studying DNA/Drug Interactions

analysis of the binding of several known DNA-binding drugs with an empirical potential 
function is shown in Figure 14.4. Except for the entropies, all the energy components, 
electrostatics, van der Waals, and hydrophobic/cavity terms, seem to favor binding to 
varying degrees. Design efforts have long been focused on optimizing the number of 
hydrogen bonds and good steric fits in the grooves.

Since DNA and the cationic organic drugs that either intercalate into the DNA or 
bind to its grooves are charged molecules, it is not surprising that nonspecific and long-
range electrostatic interactions have been found to be vital to the binding process. It is 
conceivable that in the initial binding step, the long-range and nonspecific electrostatic 
interactions help steer these charged molecules into their initial or transient encounter 
complex. At this stage of the binding process, the fine atomic details of the charge 
distribution do not matter and electrostatics is favorable and dominated by the 
Coulomb attraction between the oppositely charged binding partners [50]. At a later 
stage of binding that leads to the final docked bound state, short-range interactions 
such as van der Waals/hydrophobic contributions appear to play a large role in driving 
the formation of the stable complex (Figure 14.4). Also, short-range and directional 
electrostatic interactions such as hydrogen bonding and salt bridges play a critical role 
for the specificity of the final complex formation.

No experimental approach is available to directly measure or quantify the contri-
bution of electrostatic interactions to the association reaction between biomolecules, 
at least with the present biophysical techniques (however, see Ref. 51). Thus, different 
methods have been proposed to infer information about the role of electrostatics in the 
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FIgure 14.4 An energy component analysis of DNA–drug binding through PreDDICTA 
[32, 33], an empirical scoring function, for minor groove binders. The preDDicta method refers 
to the final state analysis in step 1 of Figure 14.3. The figure depicts a consensus view of favor-
able (blue) and unfavorable (red) energy components contributing to the binding free energy 
(green) emerging from several systems (PDB ids: 127d, 264d, 109d, 1d63, 2dbe, 121, 2dnd, 
227d, 298d, 289d, 1fmq, 1eel, 1fms, 1prp). Elec, electrostatics; vdW, van der Waals; hyb, 
hydrophobic; rtent, rotational translational entropy. Binding free energy estimate (BFEE) = DGo.
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binding process. Their quantitative and qualitative aspects, merits, and limitations are 
briefly discussed below.

A very well-established approach that is widely used to extract the electrostatic con-
tribution to the biomolecular binding processes relies on measuring the equilibrium 
binding constant at varying added salt concentrations. The classic log–log plot of the 
observed binding constant (Kobs) as a function of the 1:1 salt concentration [M+] often 
portrays a linear relationship between these two quantities. This is true at least over a 
moderate range of 1:1 salt concentration and in the absence of competing multivalent 
ions for charged biomolecular complexes [52]. The slope of this linear log–log plot is 
referred to as SKobs (= dlog Kobs/dlog [M+]) in the literature. This linear log–log plot 
has become a signature of the polyelectrolyte effect for charged ligand–nucleic acid 
complexes [53–56]. The electrostatic contribution to the binding free energy is then 
obtained as ΔGel = SKobs ln [M+] [54,56,57], as inferred from counterion condensation 
theory (CCT). The SKobs metric is often considered to reflect the net charge on the 
cationic drug and the number of “condensed” counterions released from DNA upon 
drug binding, which is entropically favorable. A very strong support for the use of this 
simple electrostatic model, where the fine atomic details of the binding molecules and 
dielectric discontinuity effects are ignored, comes from the fact that CCT can correctly 
predict the experimentally observed SKobs for small charged ligands binding to polymeric 
DNA or RNA [54,56].

Interestingly, theoretical studies using the nonlinear Poisson–Boltzmann equation 
with a formal charge distribution and no dielectric discontinuity show that SKobs equals 
the net charge of the drug in agreement with the CCT prediction [44,50,58–66]. It is 
important to stress that only the nonlinear solution of the PBE provides SKobs values that 
agree with both CCT and experimental binding data [44,67–72]. However, the linear 
relationship ΔGel = SK ln [M+], which is now widely used to parse the total binding free 
energy into electrostatic and nonelectrostatic contributions [57,73–75], does not hold 
when dielectric discontinuity effects are considered. The importance of field disconti-
nuities in correctly portraying electrostatic features of biomolecules has been shown by 
several PB studies [41,76]. Moreover, according to this popular relationship between 
SKobs and ΔGel, any drug having the same net charge but different shape and charge 
distribution will have the same ΔGel. The same is not true according to the all-atom PB 
approach. These results highlight some issues yet to be resolved in deciphering the electro-
static contribution to the overall binding energetics from continuum or implicit solvent 
models. This notwithstanding, theory (CCT or PB) provides excellent predictions of 
SKobs. This finding confirms the dominant role of long-range nonspecific electrostatics in 
controlling the salt sensitivity of the binding energetics. Thus, it is paradoxical and even 
counterintuitive that a large SKobs (in terms of its magnitude) does not necessarily imply 
a large electrostatic contribution to binding as often assumed in the literature. In fact, 
many examples in the literature and from our work clearly show the opposite trend. 
For instance, some nucleic acid-binding proteins containing a large number of anionic 
residues, such as the tRNA synthetases and elongation factor Tu when bound to its 
nucleic acid-binding partner, have SKobs absolute values that are very small or close to 
zero, but the electrostatic contribution to binding energy is quite large and unfavorable 
[41,77,78]. A strong correlation between electrostatic complementarity metrics and the 
electrostatic binding free energy of nucleic acid complexes is yet to be established.
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Some of the issues in theoretical studies that are currently under microscopic 
scrutiny in diverse laboratories include more quantitative measures of electrostatic 
potentials, sensitivity of the PB predictions to parameters such as radii, the relative 
permittivities of solvent and solute, the boundary conditions, molecular surface defini-
tion, the compensatory nature of Coulomb, and desolvation interactions. A resolution 
of these issues is expected soon.

Molecular dynamics (MD) simulation studies on drug–DNA complexes provide 
additional insights into the structure, dynamics, and energetics of binding [79–88]. 
Results of a post facto molecular mechanics/generalized born surface area (MM/
GBSA) analysis [36,89–92] of the MD trajectories of the unbound DNA 
d(CGCAAATTTGCG)2, berenil, and the complex of DNA with berenil are shown in 
Figure 14.5. While the overall picture remains similar to the empirical energy func-
tion analyses (Figure 14.4) on drug–DNA complexes and protein–DNA complexes 
[93,94], MD trajectory analyses take into account structural adaptation of the inter-
acting molecules, solvation/desolvation effects, and the role of explicit ions in binding. 
While some care is necessary in calling a component as favorable to binding due to 
the compensatory nature of several components with opposing effects contributing to 
binding, electrostatic complementarities, good steric fit of the drug in the grooves, as 
well as hydrophobic components are highlighted as important for berenil–DNA 
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FIgure 14.5 Post facto analyses of molecular dynamics trajectories on DNA, drug, and 
the complex using MM/GBSA theory and the thermodynamic cycle (steps 2 through 7) in 
Figure 14.3. An 8ns molecular dynamics simulations was performed on the DNA berenil 
complex (pdb id: 1d63), on free DNA, and on the drug with explicit solvent and counterions 
[30]. About 100 structures spaced at equal time intervals were culled from each of the three 
trajectories and averages of each energy component contributing to binding were computed. 
The net value of each energy component (DE) is calculated as ΔE = [EComplex–E(DNA + Drug)]. 
Elec, electrostatics; vdW, van der Waals; hyb, hydrophobic; rtent, rotational translational 
entropy; adapt, adaptation energy. Binding free energy estimate (BFEE) = ΔG°.
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binding. Rotational, translational entropies, vibrational/configurational entropies 
(not computed), and adaptation are expected to be unfavorable to drug–DNA binding. 
The magnitudes of the components provide a good indication of the order of impor-
tance of the energy components favorable to binding and prove valuable in drug 
design efforts.

14.2.3 WeB Tools for moDeling Dna anD Drug–Dna complexes

Theoretical methodologies are increasingly being converted into user-friendly soft-
ware to facilitate drug design endeavors. Some of the web tools for analyzing DNA 
structure and for assessing DNA–drug binding are given in Tables 14.3 and 14.4.

14.3 PersPectIves and conclusIon

Atomic models and molecular modeling and simulation methodologies of drug binding 
to DNA have matured to a stage where it is conceivable to generate reliable in silico 
suggestions of candidate molecules to bind to any specific base sequence of DNA. 
The stage is set for DNA-targeted drug discovery.
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table 14.3
web tools for dna structure generation and analysis

tool website description

Curves95,96 http://gbio-pbil.ibcp.fr/
Curves_plus/Curves + .html

Program to analyze DNA structure

NUPARM96−102 http://nucleix.mbu.iisc.ernet.
in/nuparm/nuparm.shtml

Program to analyze sequence-
dependent variations in nucleic 
acid (DNA and RNA) double 
helices

3DNA103,104 http://rutchem.rutgers.
edu/∼xiangjun/3DNA/

Program to analyze, rebuild, and 
visualize three-dimensional 
nucleic acid structures

NUCCGEN95 http://nucleix.mbu.iisc.ernet.
in/nucgen/index.htm

Program to generate a curved or 
nonuniform helix

AMBER105,106 http://ambermd.org/ Program to generate canonical 
A- and B-duplex geometries of 
nucleic acids

DNA sequence to 
structure107

http://www.scfbio-iitd.res.in/
software/drugdesign/bdna.jsp

Program to generate canonical A 
and B DNA and molecular 
dynamics-averaged DNA structure
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14.4 aPPendIx

A statistical mechanics theory for DNA–drug binding in aqueous salt media on the 
lines of protein–DNA binding [120] and protein–ligand binding [121] is presented 
here.

Let D (denoting DNA) and dr (denoting drug) be the reactants and D*dr*, the 
product of binding in aqueous salt medium.

 D dr D dr
aq aq aq[ ] + [ ] = [ ]* *  (14.1)

At equilibrium,

 µ µ µD aq dr aq D dr aq. . * *.+ =  (14.2)

where μD.aq is the chemical potential of species D in the ionic solvent medium (partial 
molar Gibbs free energy) and μo

D.aq is its standard chemical potential, that is, under 
condition of 1 bar in gaseous state and 1 M (designated as Co) in liquid state.

 
µ γ µ γ

µ

o
aq D D

o o
dr aq dr dr

o

o
D dr aq

ln / ln /D. .

* *.

+ ( ) + + ( )
= +

RT C C RT C C

RT lln /D dr  D dr
oγ * * * *C C( )

 (14.3)

where γD is the activity coefficient of species D and CD is its concentration. The 
standard molar Gibbs free energy of the reaction (standard absolute molar Gibbs free 
energy of binding) is

table 14.4
dna–ligand and dna–Protein docking and scoring software

Docking Softwares Website Description 

Surflex108 http://www.tripos.com/index.
php?family = modules,SimplePage,,,
&page= surflex_dock&s = 0

DNA–ligand docking 
software

Autodock 4.0109 http://autodock.scripps.edu/ DNA–ligand docking 
software

DNA–ligand docking110 http://www.scfbio-iitd.res.in/dock/dnadock.jsp DNA–ligand docking 
software

GOLD1112117 http://www.ccdc.cam.ac.uk/products/
life_sciences/gold/

Software for searches of 
databases for DNA–
binding compounds and 
for DNA–protein docking

HADDOCK118 http://www.nmr.chem.uu.nl/haddock/ DNA–protein docking 
software

Escher NG119 http://users.unimi.it/∼ddl/escherng/index.htm DNA–protein docking 
software
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In terms of the canonical partition function (Q)
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where ΔAo is the standard Helmholtz free energy of the reaction, PΔVo
aq is the pres-

sure volume correction to Helmholtz free energy in the solvent medium, Keq.aq is 
the equilibrium constant for the reaction in (1), NA is the Avogadro number, and Qw 
denotes the partition function for pure solvent (water).

Assuming that translations and rotations are separable from intrasolute degrees of 
freedom as well as those of the solvent,
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The superscript “int” denotes the internal contribution, and Zint is the configurational 
partition function. It includes contributions from the intermolecular interactions and 
internal motions as well as solvation (hydration) effects. The translational and rota-
tional terms have been separated out.

Zint is determined via
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XN
D and XM

W represent the configurational space accessible to the solute D and 
solvent W, respectively, in the presence of each other. E(XN

D, XM
W) denotes the total 

potential energy of the system describing nonidealities.
The electronic partition function Qel is assumed to be unity for noncovalent 

associations,

 * *Q Q Qel
D

el
dr

el
D dr 1= = =  (14.8)

The standard free energy can be expressed as a sum of external (translational 
and rotational) and internal (intramolecular, intermolecular, and solvation) 
contributions.
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Equation 14.9 is an exact expression for evaluating binding free energies for nonco-
valent associations in aqueous medium. The first two terms on the right-hand side of 
Equation 14.9 can be computed analytically. The third term is accessible to free energy 

Q3
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molecular simulations configured in the canonical ensemble such as the perturbation 
method, thermodynamic integration, potential of mean force method, etc., albeit 
they are computationally expensive for a single ligand and not practical in a high-
throughput sense even on supercomputers.

Here, some simplifications are considered to bring the binding free energy com-
putations into the feasibility domain. The molecular translational partition function 
of D is

 q V V h m k Ttr
D

3
D

2
D B

3 2  /   / /2= =Λ ( ) /π  (14.10)

where V is the volume, ΛD is the thermal wavelength of D, h is the Planck’s constant, 
kB is the Boltzmann constant, T is the temperature, and m is the mass.

The molar partition function of D is

 Q qtr
D

tr
D

NA 
= ( )  (14.11)

The volume V has been included in the translational part consistent with ideal gas 
statistical mechanics. This would require that the Zint be divided by V to quantify 
nonidealities (excess free energies). The translational part of the free energy in 
Equation 14.9 is now given by the Sackur–Tetrode [10] equivalent as
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The expression in square brackets in Equation 14.12 is dimensionless. (NA/V) may 
be replaced by a concentration term ensuring that in the transfer to aqueous medium, 
standard free energies are recovered with the reference state with a molar concentration 
of unity. This expression is the same whether in gas phase or liquid phase, provided 
that the translational and rotational motions of the solute are unaffected by the solvent. 
This will be true only in a continuum, friction-less solvent influencing the position-
dependent potential energy but not the velocity-dependent kinetic energy of the 
solute. Hence, in a transfer process (an experiment involving transfer of species D 
from one phase to another such as from gas phase to liquid phase, octanol to water, 
etc.), this term cancels out. In the binding processes however, no such cancellation 
occurs. Also, if D, dr, and D*dr* could be seen as a collection of nonbonded monoa-
tomic particles, then again the translational partition function for each species could 
be written as a product of the individual partition functions of the constituent atoms 
and since the number of atoms is conserved during binding, these terms would cancel 
out. Again, this is not so for polyatomic species where the mass in translational partition 
function mD = ∑imi is evaluated as a sum of the masses of the constituent atoms. It is 
thus recommended that Sackur–Tetrode equation be applied not in the aqueous 
medium directly where it is invalid but upon transfer to vacuum via a suitable ther-
modynamic cycle shown in Figure 14.3.

Similar arguments apply to the rotational partition functions. Separating the 
rotational part from internal motions implies working under the rigid rotor 
approximation.
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The molecular rotational partition function of D is

 q k T I I Irot
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Ia
D, Ib

D, and Ic
D are the components of moments of inertia of species D along the 

principal axes and sD its symmetry number.
Considering Equations. 14.12 and 14.14, Equation 14.9 may now be written as
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Free energy contributions from internal motions that are coupled to solvent are 
best handled via molecular simulations. Separating the two will amount to an 
approximation.
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Equations similar to Equation 41.16 can be written for D and D*dr* and converted to 
excess free energies. Such a separation allows

 ∆ ∆ ∆ ∆ ∆G G G G Go o
tr

o o
int

o
solvn    rot    = + + +  (14.17)

Equation 14.17 forms the theoretical basis for the additivity assumed in free 
energy computations as employed in master equation methods [115,116]. The PΔV°aq 
term in Equation 14.9 is often neglected in liquid-state work. If Equations. 14.16 and 
14.17 are employed for each structure generated according to Boltzmann distribution 
either via molecular dynamics or Metropolis Monte Carlo and averages are com-
puted with a suitably calibrated dielectric continuum solvent model for solvation 
energy for each structure, the results are expected to correspond to Equation 14.9, 
which is exact (subject to the separability of translations/rotations from internal 
motions). In inferring free energies of drug–DNA binding from molecular simula-
tions, care must be taken to ensure that the counterions/coions (whether they are 
“bound” or “released”) are treated as a part of the solute, viz., the DNA or the drug or 
the complex and their stoichiometries maintained during binding (as in Figure 14.3). 
Added salt effects are yet to be incorporated in this theory.

 ∆ ∆ ∆G H T So
int

o
int

o
int  = –  (14.18)
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 ∆ ∆ ∆ ∆ ∆H H H E Eo
intermolecular

o
el

o
vdw

o
intermolecular

o
el= + = = +‹ › ‹ ∆∆Eo

vdw ›  (14.19)

 ∆ ∆H Eo
intramolecular

o 
intramolecular  = ‹ ›  (14.20)

In the above equations, ΔE°el and ΔE°vdw represent the electrostatic and van der 
Waals components of the intermolecular interaction energy between the DNA and 
the drug.

ΔEo
intramolecular represents changes in both bonded and nonbonded contributions to 

the intramolecular energy of the DNA and the drug upon binding. All these quantities 
can be computed from a molecular mechanics force field either for a fixed structure 
(from minimization studies) or for an ensemble of structures from MD simulations.

 ∆ ∆S So
int

o
vib config  = ,  (14.21)

Entropy changes can be calculated by a normal mode analysis of an energy-
minimized structure (ΔS°vib) or by a quasi-harmonic approximation introduced by 
Karplus and Kushick [122] and subsequently extended and adapted to MD simula-
tion by Schlitter [123] and van Gunsteren [124]. Equation 14.17 is utilized to generate 
the energetics of drug–DNA binding from MD simulations.
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