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In search of an ab initio model to characterize DNA sequences as genes and nongenes, we examined some
physicochemical properties of each trinucleotide (codon), which could accomplish this task. We constructed
three-dimensional vectors for each double-helical trinucleotide sequence considering hydrogen-bonding energy,
stacking energy, and a third parameter, which we provisionally identified with DNAsprotein interactions.
As this three-dimensional vector moves along any genome, the net orientation of the resultant vector should
differ significantly for gene and nongene regions to make a distinction feasible, if the underlying model has
some merits. An analysis of 331 prokaryotic genomes comprising a total of 294 786 experimentally verified
genes (nonoverlapping) and an equal number of nongenes presents a proof of concept of the model without
the need for further parametrization. Also, initial analyses onSaccharomyces cereVisiae andArabidopsis
thalianasuggest that the methodology is extendable to eukaryotes. The physicochemical model (ChemGe-
nome1.0) introduced has the potential to be developed into a gene-finding algorithm and, more pressingly,
could be employed for an independent assessment of the annotation of DNA sequences.

I. INTRODUCTION

The regulation of gene expression is a matter of chemistry
between DNA and proteins at the molecular level. While
remarkable advances have been made over the past two
decades in the analysis of DNA sequences and in gene
prediction in particular, via statistical and mathematical
models and artificial intelligence techniques based on ge-
nome, gene, cDNA, and protein sequence databases and the
clever design of computational protocols,1-28 an expeditious
in silico gene-finding model which directly captures the
physicochemical properties intrinsic to DNA sequences and
the chemistry of protein-DNA interactions remains a goal
yet to be realized. Proceeding along these lines, we sought
to look for some simplifying universal principles working
behind deciding “what can be a gene” in any species.
Working with the hypothesis that both the structure of the
DNA and its interactions with regulatory proteins and
polymerases decide the function of a DNA sequence, we
developed a simple three-parameter model based on Wat-
son-Crick hydrogen-bonding energy, base-pair stacking
energy, and a third parameter which we provisionally
identified with DNAsprotein interactions. Each of these
parameters acts as a dimension for a three-dimensional unit
vector, whose orientation differs for each trinucleotide. The
premise that the cumulative vectors for gene and nongene
regions should differ in orientation (Figure 1) stands verified
on 331 prokaryotic genomes and 21 eukaryotic genomes.
We introduce, here, the physicochemical model for analyzing
DNA sequences, present a series of validation tests on a large

number of genomes, and examine its merits and limitations
and its potential utility in genome analyses.

II. METHODS

The physicochemical model proposed involves developing
a three-dimensional (3-D) vector for double-helical deoxy-
ribonucleic acid (DNA) base sequences, with each dimension
representing one facet of DNA recognition29 by proteins.
Each of the 64 trinucleotides is assigned three coordinates,
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Figure 1. Physicochemical model for analyzing DNA sequences
and the hypothesis for genome characterization as genes and
nongenes.

78 J. Chem. Inf. Model.2006,46, 78-85

10.1021/ci050119x CCC: $33.50 © 2006 American Chemical Society
Published on Web 10/12/2005



x, y, andz, in the interval of-1 to +1, (x, y, z ∈ [-1, +1]),
corresponding to the three proposed chemical properties of
DNA. For a given DNA sequence (genome segment), the
resultant vector is found by accumulating thex, y, and z
components of the individual codons (X ) ∑x, Y ) ∑y, Z )
∑z). The orientation of this resultant vector from the origin
is given by the direction cosines. Thex, y, andz parameters
for each codon are developed as follows.

Step 1.The Watson-Crick (WC) hydrogen-bond energies
between bases in a base pair embedded in B-DNA in an
aqueous environment calculated using the finite difference
Poisson-Boltzmann30 (FDPB) method gave a value of∼ -2
kcal/mol/H bond (Jayaram and Honig, unpublished data,
1989). The number of WC hydrogen bonds formed by each
codon in the double helix are counted, converted to energies,
and mapped onto the [-1, 1] interval giving thex coordi-
nates.

E is the set of magnitudes of H-bond energies for all 64
codons, andx is the corresponding WC H-bond parameter.
We observed earlier that WC hydrogen bonds and stacking
could largely account for the dynamics and flexibility of
codons,31 offering an explanation for the effects of wobble
during translation.

Step 2.The electrostatic, van der Waals, and hydrophobic
contributions to stacking energies were calculated for the
32 unique double-helical trinucleotide sequences after build-
ing the structures in canonical B-DNA form and geo-
metrically optimizing them.32 AMBER33 force-field param-
eters were used for all the calculations. The electrostatic
contribution was computed using the FDPB method. The
resultant energies were then linearly mapped onto the interval
[-1, 1] as shown in Table 1, giving they coordinates for
each trinucleotide.

Step 3. To obtain thez coordinates for each codon, a
training set of 1500 gene/nongene (shifted-gene) pairs (where
a gene is at least 100 nucleotides long) of theE. coli K12
genome34 was used. Thezparameters were optimized to give
the best separation in orientation between the gene and
nongene vectors. This can be achieved if we send thez
components of the gene and nongene vectors to the extreme
opposite ends on the unit sphere.

Let z ) ∑ fizi, wherefi is the frequency fraction of theith
codon, andzi is ith codon’sz value. Since-1 e zi e 1 and
∑fi ) 1, then-1 e z e 1.

Therefore, the problem of maximizing separation can be
formulated as

where-1 e zi e 1, z ) ∑fizi, andz′ ) ∑fi′zi. In the above

function, thez component of the genes is being sent to the
+1 extreme and that of the nongenes (z′) is being sent to
-1. This is a convex positive valued function and, hence,
has its global minimum. We have used the “steepest descent
method for constrained objective (optimization) space”35 to
locate the minimum and, thus, optimized thez parameters.
We found that all thezvalues, without exception, were either
+1 or -1 (though the optimization was carried out in the
continuous space [-1, 1]), which gives the impression that
some codons are more favorable to gene character and others
to nongene character. To test this hypothesis, we then
retrained thez parameters on 62 microbial genomes indi-
vidually and recovered essentially the samez values (of 64
codons) across the 62 microbial genomes. This indicates that
z values are capturing some inherent DNA structural/
functional properties and are not merely database-trained
parameters. We also noticed that thezvalues obtained were,
by and large, consistent with the rule of conjugates31

proposed earlier. The conjugate rule captures the observed
quartet degeneracy without exception and is a macro-level
manifestation of the molecular-level interactions at the
decoding site in the translation step of gene expression.
According to the rule of conjugates, adenine (A) is the
conjugate of cytosine (C) and guanine (G) is the conjugate
of thymine (T). A codon and its corresponding conjugate
codon have equal and opposite values for thez parameter
(namely,+1 or -1). A -1 value for a codon does not mean
that it occurs only in the nongenes. In the training (optimiza-
tion) function, thezvalues are weighted using gene/nongene
fractions and the minimum of that function is favored by
the corresponding+1/-1 values. Use of the fraction just

E[i] ) (no. of H bonds× 2 kcal/mol), i ) 1-64

x[i] ) [{E[i] - median(E)}/{maximum(E) -
median(E)}]

E[i] ) stacking energy forith codon, i ) 1-64

y[i] ) [{E[i] - median(E)}/{maximum(E) -
median(E)}]

min ∑
all pairs

[(z - 1)2 + (z′ + 1)2]

Table 1. Assigned Values for thex, y, andz Coordinates for Each
of the 64 Codons

CODON x y z CODON x y z

CCC 1.0 1.0 -1 TCC 0.33 0.16 -1
CCG 1.0 0.95 -1 TCG 0.33 0.13 -1
CCT 0.33 0.39 1 TCT -0.33 -0.12 -1
CCA 0.33 0.27 -1 TCA -0.33 -0.54 -1
CGC 1.0 0.72 1 TGC 0.33 -0.01 -1
CGG 1.0 0.95 -1 TGG 0.33 0.27 -1
CGT 0.33 0.17 1 TGT -0.33 -0.41 -1
CGA 0.33 0.13 -1 TGA -0.33 -0.54 -1
CTC 0.33 -0.11 -1 TTC -0.33 -0.30 -1
CTG 0.33 -0.06 -1 TTG -0.33 -0.28 -1
CTT -0.33 -0.12 1 TTT -1.0 -0.24 1
CTA -0.33 -0.26 -1 TTA -1.0 -0.37 -1
CAC 0.33 -0.19 1 TAC -0.33 -0.38 -1
CAG 0.33 -0.06 -1 TAG -0.33 -0.26 -1
CAT -0.33 -0.18 1 TAT -1.0 -0.30 1
CAA -0.33 -0.28 1 TAA -1.0 -0.37 -1
GCC 1.0 0.72 1 ACC 0.33 0.26 -1
GCG 1.0 0.72 -1 ACG 0.33 0.17 -1
GCT 0.33 0.16 1 ACT -0.33 -0.34 1
GCA 0.33 -0.01 1 ACA -0.33 -0.41 -1
GGC 1.0 0.72 1 AGC 0.33 0.16 1
GGG 1.0 1.0 -1 AGG 0.33 0.39 -1
GGT 0.33 0.26 1 AGT -0.33 -0.34 1
GGA 0.33 0.16 1 AGA -0.33 -0.12 1
GTC 0.33 -0.22 1 ATC -0.33 -0.21 1
GTG 0.33 -0.19 1 ATG -0.33 -0.18 -1
GTT -0.33 -0.25 1 ATT -1.0 -0.14 1
GTA -0.33 -0.38 1 ATA -1.0 -0.30 -1
GAC 0.33 -0.22 1 AAC -0.33 -0.25 1
GAG 0.33 -0.11 1 AAG -0.33 -0.12 -1
GAT -0.33 -0.21 1 AAT -1.0 -0.14 1
GAA -0.33 -0.30 1 AAA -1.0 -0.24 1
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implies favorability of a codon toward gene/nongene char-
acter.

The adherence ofz values to the rule of conjugates
prompted us to search for some consistent patterns in the
major groove of each base pair. Currently, work is in progress
in this direction. We also note that thex, y, andzparameters
fall into 31 unique sets. Out of them, 18 are found to follow
symmetric considerations, suggesting that there is room for
further improvement of the parameters. Table 1 gives the
values for thex, y, andz parameters for each codon of the
physicochemical model.

Orthogonalization of the Model Parameters.We noticed
that the set ofx, y, andz parameters developed above were
not mutually orthogonal. We, therefore, orthogonalized these
parameters by performing the method of “successive par-
tialling”36,37 on the obtainedx-y-z values. We tookz as
the first predictor, then residualizedy with z, and finally
residualizedx with y andz combined. However, the results
presented in Figure 2 and Tables 2 and 3 and discussed below
differ only marginally whether orthogonalization is carried
out. Hence, for the sake of simplicity and clarity of
interpretation, we carried out our analysis with unorthogo-
nalizedx, y, andz values, as listed in Table 1.

Finding the Best Plane Dividing Genes from Nongenes.
The best plane is generated for every genome using a pocket

algorithm38 (modified perceptron algorithm), which is a
modification of perceptron learning39 that makes perceptron
learning well-behaved with nonseparable training data.

III. RESULTS

We tested the physicochemical model on 331 prokaryotic
genomes, following the experimentally verified Genbank
data.40 Gene regions and each of their nongene (frame-shifted
gene) regions in these genomes are separated, and the
orientation of the resultant vectors for each DNA segment
are calculated. The clusterings of gene and nongene points
obtained in the best six and worst six cases are presented in
Figure 2 (A-L). A clear separation of genes (blue) from
nongenes (red) is discernible in almost all of the cases. By
focusing on experimentally verified genes, the problem of
overannotation in some prokaryotes is circumvented for the
purposes of evaluating the model. Despite the simplicity of
the model, the segregation of genes and nongenes noticed
across different prokaryotic genera and species is significant.
It is also clear from Figure 2 (G-L) that, even in the worst
cases, clustering of genes and nongenes does occur.

The gene/nongene (frame-shifted gene) separation accura-
cies for various species are quantified and presented in Table
2 after finding the best plane for each genome that divides
the unit sphere into gene and nongene hemispheres. It is

Figure 2. Three-dimensional plots of the distributions of gene and nongene direction vectors for the six best (A-F) and six worst (G-L)
cases calculated from the genomes of (A)Agrobacterium tumefaciens(NC_003304), (B)Wolinella succinogenes(NC_005090), (C)
Rhodopseudomonas palustris(NC_005296), (D)Bordetella bronchiseptica(NC_002927), (E)Clostridium acetobutylicium(NC_003030),
(F) Bordetella pertusis(NC_002929), (G)Thermococcus kodakaraensis(NC_006624), (H) Brucella suis(NC_004310), (I)Pyrococcus
horikoshii(NC_000961), (J) Bacillus subtilis(NC_000964), (K)Mesorhizobium loti(NC_002678), and (L)Bacillus halodurans(NC_002570)..
Points colored blue correspond to genes, and those colored red correspond to nongenes. The plot is generated using MATLAB (release 13,
version 6.5).
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noteworthy that the computed correlation coefficients areg
0.90 or better for more than 300 genomes and 1.0 for 92
genomes, even when fixed values forx, y, andz were used
for all 331 genomes. We also tested our model for experi-
mentally verified genes versus the nongenic regions preced-
ing them (pregenes) for 331 genomes (Table 3). For more
than 80% of the genomes, separation sensitivity isg 0.9.
Further, on analyzing the worst case genomes, we checked
for conformity of the gene sequences with some basic gene
characteristics (a gene sequence is expected to have an
initiation codon, a termination codon, and no internal stop
codons). We found a large number of such nonconforming
sequences in the worst case genomes and a negligibly low

number in the best case genomes. We reperformed the
analysis for the worst case genomes after removing such
nonconforming sequences and found the separation correla-
tions to beg 0.9 (e.g., NC_000961 previous accuracy)
0.53, revised accuracy) 0.96; NC_002678 previous ac-
curacy) 0.38, revised accuracy) 1.0). Thus, the results
obtained using a fixed set of (x, y, z) parameters are
promising for each genome without exception, which re-
confirms our belief that the physicochemical model intro-
duced is ab initio and independent of any species-dependent
codon biasing.

The specificities and sensitivities41 achieved in gene versus
nongene separation with this simple physicochemical model

Table 2. Gene Evaluation Dataa for Prokaryotic Genomes for Experimentally Verified Genes (Nonoverlapping) and Shifted Genes

species
number NCBI_ID species name genes TPb FPb SSb SPb CCb

1 NC_000117 Chlamydia trachomatis 463 458 4 0.98 0.99 0.98
2 NC_000853 Thermotoga maritimaMSB8 641 619 3 0.96 0.99 0.96
3 NC_000854 Aeropyrum pernixK1 561 532 7 0.94 0.98 0.93
4 NC_000868 Pyrococcus abyssiGE5 632 630 241 0.99 0.63 0.49
5 NC_000907 Haemophilus influenzae 955 953 7 0.99 0.99 0.99
6 NC_000908 Mycoplasma genitaliumG-37 189 186 2 0.98 0.98 0.97
7 NC_000909 Methanocaldococcus janaschii 720 708 9 0.98 0.98 0.97
8 NC_000912 Mycoplasma pneumoniaeM129 243 241 2 0.99 0.99 0.98
9 NC_000913 Escherichia coliK12 2759 175 659 0.63 0.72 0.39

10 NC_000915 Helicobacter pylori 731 727 4 0.99 0.99 0.98
11 NC_000916 Methanobacterium thermoautotrophicum 719 711 4 0.98 0.99 0.98
12 NC_000917 Archaeoglobus fulgidus 782 774 8 0.98 0.98 0.97
13 NC_000917 Archaeoglobus fulgidusDSM4304 782 774 8 0.98 0.98 0.98
14 NC_000918 Aquifex aeolicusVF5 584 575 3 0.98 0.99 0.97
15 NC_000921 Helicobacter pyloristrain J99 658 648 9 0.98 0.98 0.97
16 NC_000922 Chlamydophila pneumoniaeCWL029 597 590 9 0.98 0.98 0.97
17 NC_000948 Borrelia burgdorferiB31 plsmids cp32-1 11 11 0 1.0 1.0 1.0
18 NC_000949 Borrelia burgdorferiB31 plsmids cp32-3 11 11 0 1.0 1.0 1.0
19 NC_000950 Borrelia burgdorferiB31 plsmids cp32-4 11 11 0 1.0 1.0 1.0
20 NC_000951 Borrelia burgdorferiB31 plsmids cp32-6 10 10 0 1.0 1.0 1.0

a Data for the first 20 genomes in the order of NCBI IDs are shown in this table. Data for all 331 genomes are provided in Supporting Information
Table 1 (Table S1).b True positives (TP): genes evaluated as genes. False positives (FP): nongenes evaluated as genes. True negatives (TN):
nongenes evaluated as nongenes. False negatives (FN): genes evaluated as nongenes. Number of actual positives (AP)) TP + FN. Number of
actual negatives (AN)) FP + TN. Predicted number of positives (PP)) TP + FP. Predicted number of negatives (PN)) TN + FN. Sensitivity
(SS)) TP/(TP+ FN). Specificity (SP)) TP/(TP+ FP). Correlation- coefficient) (TP × TN - FP × FN)/xAN×PP×AP×PN.

Table 3. Gene Evaluation Dataa for Prokaryotic Genomes for Experimentally Verified Genes (Nonoverlapping) and Pregenes

species
number NCBI_ID species name genes TP FP SS SP CC

1 NC_000117 Chlamydia trachomatis 463 426 93 0.92 0.82 0.73
2 NC_000853 Thermotoga maritimaMSB8 641 579 149 0.90 0.79 0.67
3 NC_000854 Aeropyrum pernixK1 561 441 113 0.79 0.80 0.67
4 NC_000868 Pyrococcus abyssiGE5 632 329 8 0.52 0.98 0.45
5 NC_000907 Haemophilus influenzae 955 898 120 0.94 0.88 0.82
6 NC_000908 Mycoplasma genitaliumG-37 189 175 22 0.92 0.89 0.80
7 NC_000909 Methanocaldococcus janaschii 720 646 117 0.90 0.85 0.80
8 NC_000912 Mycoplasma pneumoniaeM129 243 218 53 0.90 0.80 0.69
9 NC_000913 Escherichia coliK12 2759 1946 645 0.70 0.75 0.47

10 NC_000915 Helicobacter pylori 731 679 155 0.93 0.81 0.71
11 NC_000916 Methanobacterium thermoautotrophicum 719 675 190 0.94 0.78 0.68
12 NC_000917 Archaeoglobus fulgidus 782 724 251 0.92 0.74 0.61
13 NC_000917 Archaeoglobus fulgidusDSM4304 782 724 251 0.92 0.74 0.61
14 NC_000918 Aquifex aeolicusVF5 584 534 186 0.91 0.74 0.62
15 NC_000921 Helicobacter pyloristrain J99 658 615 109 0.93 0.85 0.76
16 NC_000922 Chlamydophila pneumoniaeCWL029 597 573 170 0.96 0.77 0.72
17 NC_000948 Borrelia burgdorferiB31 plsmids cp32-1 11 11 1 1.0 0.92 0.90
18 NC_000949 Borrelia burgdorferiB31 plsmids cp32-3 11 11 0 1.0 1.0 1.0
19 NC_000950 Borrelia burgdorferiB31 plsmids cp32-4 11 10 1 0.91 0.91 0.80
20 NC_000951 Borrelia burgdorferiB31 plsmids cp32-6 10 10 0 1.0 1.0 1.0

a Data for the first 20 genomes in the order of NCBI IDs are shown in this table. Data for all 331 genomes are provided in Supporting Information
Table 2 (Table S2).
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are comparable to the more sophisticated mathematical
models built into the extant gene-finding algorithms. Tables
2 and 3 together convey the utility of the physicochemical
model for a database-independent evaluation of genome
annotation.

Shorter fragments of DNA, as in genes for tRNAs, are
particularly problematic with conventional models. The
physicochemical model when tested on experimentally
verified tRNA genes in the cases ofSaccharomyces cereVi-
siaeandArabidopsis thalianayielded 98.26% true positives
(Table 4).

Application of the physicochemical model to exonic
regions ofA. thalianaresulted in sensitivity, specificity, and
correlation coefficients of 0.75, 0.94, and 0.62 for chromo-
some I and 0.82, 0.91, and 0.65 for chromosome II,
respectively. Similar results were obtained for chromosomes

III, IV, and V. Also, initial analyses of all gene/nongene
regions in the 16 chromosomes ofS. cereVisiae, a eukaryote
(Table 5), show promise for the general applicability of the
methodology regardless of the source of the genome. An
analysis of chromosome I ofA. thalianaat the gene level
resulted in sensitivity, specificity, and correlation coefficients
of 0.82, 0.81, and 0.62, respectively. We also tested our
model on viruses where different open reading frames result
in different gene products. Application of the model to more
than 100 such genes (overlapping genes) and their pregenes
results mostly in sensitivity, specificity, and correlation
coefficients of 1.0, 1.0, and 1.0, respectively (Tables 6 and
7), thus, further validating the model.

A question arises whether the percentage of GC content,
which provides an even simpler model for gene/nongene
separation in prokaryotes, can produce results comparable

Table 4. Gene Evaluation Data for 21 Eukaryotic Genomes for Experimentally Verified tRNA Genes (Nonoverlapping) and Pregenes

species
number NCBI_ID species name genes TP FP SS SP CC

1 NC_001133 S. cereVisiaechromosome I 6 5 0 0.83 1.0 0.91
2 NC_001134 S. cereVisiaechromosome II 14 14 0 1.0 1.0 1.0
3 NC_001135 S. cereVisiaechromosome III 12 11 0 0.92 1.0 0.95
4 NC_001136 S. cereVisiaechromosome IV 31 31 0 1.0 1.0 1.0
5 NC_001137 S. cereVisiaechromosome V 20 19 1 0.95 0.95 0.95
6 NC_001138 S. cereVisiaechromosome VI 12 12 0 1.0 1.0 1.0
7 NC_001139 S. cereVisiaechromosome VII 38 38 0 1.0 1.0 1.0
8 NC_001140 S. cereVisiaechromosome VIII 11 11 0 1.0 1.0 1.0
9 NC_001141 S. cereVisiaechromosome IX 10 10 1 1.0 0.91 0.95

10 NC_001142 S. cereVisiaechromosome X 26 26 0 1.0 1.0 1.0
11 NC_001143 S. cereVisiaechromosome XI 19 18 0 0.95 1.0 0.97
12 NC_001144 S. cereVisiaechromosome XII 24 22 4 0.92 0.85 0.87
13 NC_001145 S. cereVisiaechromosome XIII 25 24 1 0.96 0.96 0.96
14 NC_001146 S. cereVisiaechromosome XIV 18 18 0 1.0 1.0 1.0
15 NC_001147 S. cereVisiaechromosome XV 26 26 1 1.0 0.96 0.98
16 NC_001148 S. cereVisiaechromosome XVI 17 17 0 1.0 1.0 1.0
17 NC_003070 A. thalianachromosome I 239 239 5 1.0 0.98 0.99
18 NC_003071 A. thalianachromosome II 96 90 2 0.94 0.98 0.96
19 NC_003074 A. thalianachromosome III 93 92 1 0.99 0.99 0.99
20 NC_003075 A. thalianachromosome IV 79 77 1 0.97 0.99 0.98
21 NC_003076 A. thalianachromosome V 108 108 1 1.0 0.99 0.99

Table 5. Gene Evaluation Data for 21 Eukaryotic Genomes for Experimentally Verified Genesa (Nonoverlapping Coding Sequences) and
Pregenes

species
number NCBI_ID species name genes TP FP SS SP CC

1 NC_001133 S. cereVisiaechromosome I 87 73 10 0.84 0.88 0.74
2 NC_001134 S. cereVisiaechromosome II 355 273 26 0.77 0.91 0.72
3 NC_001135 S. cereVisiaechromosome III 134 102 9 0.76 0.92 0.72
4 NC_001136 S. cereVisiaechromosome IV 667 606 62 0.91 0.91 0.82
5 NC_001137 S. cereVisiaechromosome V 229 202 19 0.88 0.91 0.81
6 NC_001138 S. cereVisiaechromosome VI 100 86 10 0.86 0.89 0.78
7 NC_001139 S. cereVisiaechromosome VII 449 398 43 0.89 0.90 0.80
8 NC_001140 S. cereVisiaechromosome VIII 252 219 28 0.87 0.89 0.77
9 NC_001141 S. cereVisiaechromosome IX 170 143 17 0.84 0.89 0.76

10 NC_001142 S. cereVisiaechromosome X 298 279 81 0.94 0.77 0.71
11 NC_001143 S. cereVisiaechromosome XI 270 223 10 0.82 0.96 0.81
12 NC_001144 S. cereVisiaechromosome XII 411 334 33 0.81 0.91 0.76
13 NC_001145 S. cereVisiaechromosome XIII 408 290 23 0.71 0.93 0.68
14 NC_001146 S. cereVisiaechromosome XIV 346 298 40 0.86 0.88 0.76
15 NC_001147 S. cereVisiaechromosome XV 457 367 38 0.80 0.91 0.74
16 NC_001148 S. cereVisiaechromosome XVI 397 355 50 0.89 0.88 0.78
17 NC_003070 A. thalianachromosome I 38 568 28 882 1810 0.75 0.94 0.62
18 NC_003071 A. thalianachromosome II 21797 17 873 1759 0.82 0.91 0.65
19 NC_003074 A. thalianachromosome III 27 611 22 496 2166 0.81 0.91 0.65
20 NC_003075 A. thalianachromosome IV 22 006 17 535 1491 0.80 0.92 0.64
21 NC_003076 A. thalianachromosome V 30 924 24 070 2015 0.78 0.92 0.65

a Exons are treated as genes.
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to those of the current model, and the answer is in the
negative. Gene sequences and the corresponding frame-
shifted (nongene) sequences have nearly the same percentage
GC. So, for the percentage GC algorithm, the two sequences
are functionally similar.

The accuracies of the calculated correlation coefficients
of most of the existing models depend on annotation
accuracies in the database. For the case ofAeropyrum pernix,
the calculated sensitivity, specificity, and correlation coef-
ficients were 0.77, 0.97, and 0.91, when calculations were
done relative to the existing annotated data with the phys-
icochemical model. The results improved when the physi-
cochemical model was employed for experimentally verified
genes, and sensitivity, specificity, and correlation coefficients

of 0.94, 0.98, and 0.93, respectively, were recovered. This
can possibly be due to overannotation, as widely believed.42

The quality of annotation in sequenced microbial genomes
is presented in a recent commentary.43

IV. DISCUSSION

A novel physicochemical model is developed and tested
on 331 prokaryotic genomes wherein genes and nongenes
(shifted-genes and pregenes) could be distinguished with
separation accuracies comparable to those of the existing
methods. In the case of prokaryotes, the pregene regions are
typically very small and consist of regulatory or other signal
sites; hence, we considered shifted genes as nongenes for
the purpose of performance appraisal of the model (Table
2). Moreover, when we checked the separation accuracies
between the gene and pregene regions, the specificity tended
to drop slightly (Table 3), that is, an increase in the false
positives, which indicates that the physicochemical model
captures the regulatory sites as well. As a matter of fact,
shifted genes contain stop codons and are never expressed,
implying that a shifted gene is a stronger nongene sequence
than a pregene sequence and provides a good case study for
the validation of the model.

Table 6. A. thaliana(Exonic Region vs Pregene and Introns)

software sensitivity specificity

ChemGenome1.0 0.75 0.94
GeneMark.hmm 0.82 0.77
GenScan 0.63 0.70
MZEF 0.48 0.49
FGENF 0.55 0.54
Grail 0.44 0.38
FEX 0.55 0.32
FGENESP 0.42 0.59

Table 7. Gene Evaluation Data for Overlapping Genes and Nogenes (Pregenes) in Virus Genomes

species number NCBI_ID

number of
overlapping
genes tested start and stop position TP FP SS SP CC

1 NC_001498 2 1807..3330; 1829..2389 2 0 1.0 1.0 1.0
2 NC_001507 3 1465..1067; 1601..1212; 2588..1543 3 0 1.0 1.0 1.0
3 NC_001515 6 175..411; 175..748; 797..2917; 797..810;

4076..2925; 5004..4045
6 1 1.0 0.86 0.84

4 NC_001661 5 12049..13833; 13757..15364; 15339..16061;
16155..16826; 16792..17295

5 0 1.0 1.0 1.0

5 NC_001664 16 80277..81035; 80812..82479; 99260..100588;
100545..101552; 105562..107028; 106965..107198;
108325..110667; 110636..112624; 27116..26259;
27349..26948; 53135..51723; 53916..53086;
62080..59588; 64214..62034; 128136..125989;
130043..127551

13 2 0.81 0.87 0.68

6 NC_001798 4 25100..24810; 26878..25016; 147533..146625;
147699..147244

3 0 0.75 1.0 0.77

7 NC_001819 3 619..2235; 2221..5835; 5775..7805 3 0 1.0 1.0 1.0
8 NC_002469 4 46..2535; 946..2580; 2535..4100; 4093..6381; 4 0 1.0 1.0 1.0
9 NC_003310 12 79938..80324; 80281..80739; 81358..82359;

82274..82831; 104072..104713; 104710..105456;
128269..129549; 129479..130042; 130062..131210;
131207..134701; 151299..151676; 151666..152388

12 1 1.0 0.92 0.91

10 NC_003518 2 383..877; 383..3178 2 0 1.0 1.0 1.0
11 NC_003519 3 405..1688; 1675..2025; 1889..2461 3 0 1.0 1.0 1.0
12 NC_003520 2 130..3942; 130..5466 2 0 1.0 1.0 1.0
13 NC_003680 3 2822..3421; 2822..4795; 2859..3323 3 0 1.0 1.0 1.0
14 NC_003977 4 1..1623; 155..835; 1901..2452; 2307..3215 4 0 1.0 1.0 1.0
15 NC_004002 14 57592..58593; 58508..59065; 73198..73935;

73932..74588; 74631..76991; 76988..78895;
103414..104706; 104675..105181; 9918..9649;
10390..9905; 10698..10396; 11219..10689;
111787..110876; 111980..111756

14 1 1.0 0.93 0.92

16 NC_004102 2 342..9377; 342..828 2 0 1.0 1.0 1.0
17 NC_004323 4 43277..43513; 43371..44468; 28214..27387;

28546..28208
4 0 1.0 1.0 1.0

18 NC_006883 16 123336..123869; 123866..124294; 126904..127383;
127380..128420; 144040..144372;
144369..144812; 154028..155035;
155022..156404; 167145..168116; 168113..170440;
196427..197362; 197331..198209; 198244..198975;
198972..199874; 205819..206724; 206717..270508

16 0 1.0 1.0 1.0
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A comparison of the sensitivities obtained with the
physicochemical model (ChemGenome1.0) vis-à-vis existing
software such as GLIMMER (sensitivity> 97%), SOFT-
BERRY (sensitivity> 95%), and GENEMARK (sensitivity
> 85%) clearly indicates a satisfactory performance. In
addition, when the model was tested on eukaryotes (A.
thalianaandS. cereVisiae), the results were equally encour-
aging (Table 6). The model behaves equally well in capturing
tRNA genes and in separating the overlapping viral genes.
The above data is indicative of the potential of the model to
be developed into a stand-alone algorithm for gene finding.
More immediately, the model could be adapted in conjunc-
tion with the current mathematical and statistical methods
for evaluating gene predictions.

Some improvements envisioned in the model are a more
obvious interpretation of thez parameter in terms of groove
potentials and protein-DNA interactions and definition of
a universal plane for all or at least a class of genomes. All
sequence-dependent properties associated with the grooves
of the double helix are captured in thez parametersa
scenario which can be improved by a systematic exploration
of the diverse energy contributors to protein-DNA recogni-
tion. On the feasibility of identifying a universal plane to
differentiate gene from nongene vectors, we considered fixing
the plane and recovered a correlation of more than 0.90 for
260 out of 331 prokaryotic genomes. Work along these lines
is in progress. Also, work is in progress to characterize the
model on exons, introns, and intergenic regions in eukaryotic
genomes. Further analyses are likely to lead to some new
insights into the noncoding DNA. As of now, the segregation
of genes and nongenes in over 350 genomes presents strong
proof of the concept of the physicochemical model and points
to the possibility of developing novel hypothesis-driven
models for DNA sequence analyses utilizing the enormous
and continually expanding genomic information.

V. CONCLUSIONS

A physicochemical model for gene evaluation is introduced
and its performance appraised on 331 prokaryotic genomes,
21 eukaryotic genomes, and 18 viral genomes with highly
encouraging results. The physicochemical model introduced
is amenable to further systematic improvements in terms of
incorporating more protein-DNA chemistry. Alternatively,
information from atomic models for genome analysis44-47

can be incorporated. The minimal database dependence, the
existence of fixed parameters for separating gene and
nongene regions, the goodness of the observed fit in relation
to known annotation, the extendibility of the model to
eukaryotes and tRNAs, and the scope for systematic im-
provements are some of the attractive features of the model.
Furthermore, a reasonable expectation is that an investigation
of the location of the gene regions on the unit sphere (Figure
2) and its relation to the underlying physicochemical
principles built into the three dimensions could contribute
to a new view of what can be a gene and its functional
implications. Other potential applications include comparative
genomics studies, a genomic signature for phylogenetic
analysis, and evolving criteria for designing stable DNA
sequences based on the location of the gene vectors for
designed sequences.
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