BAPPL+ Web Server Manual

BAPPL+

(Binding Affinity Prediction of Protein-Ligand)

¹Initially, BAPPL was developed at the Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio) IIT Delhi for the binding affinity prediction of non-metallo protein-ligand complexes.

²The new version introduced from the SCFBO lab, named BAPPL-Z, can predict the binding affinity of nonmetallo protein-ligand complexes and zinc metallo protein-ligand complexes.

³In 2020, the latest version named BAPPL+ was introduced from the SCFBio Lab to predict the binding affinity of non-metallo and metallo protein-ligand complexes using the machine learning method.

- 1. Jain T, Jayaram B (2005). An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes. FEBS Lett. 5;579(29):6659-66. doi: 10.1016/j.febslet.2005.10.031.
- 2. Jain T, Jayaram B (2007). Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. Proteins. 67(4):1167-78. doi: 10.1002/prot.21332.
- Soni A, Bhat R, Jayaram B (2020). Improving the binding affinity estimations of protein-ligand complexes using machine-learning facilitated force field method. J Comput Aided Mol Des. 34(8):817-830. doi: 10.1007/s10822-020-00305-1.

BAPPL+ (Binding Affinity Prediction of Protein-Ligand complex) is a computationally fast protocol for predicting the binding affinity of non-metallo and metallo protein-ligand complexes. The BAPPL+ methodology calculates the binding affinities of non-metallo and Metallo protein-ligand complexes based on electrostatic (ΔE_{ele}), van der Waals (ΔE_{vdw}), hydrophobic (ΔE_{hyp}), and entropic ($-T\Delta S_{conf}$) contributions. Explicit quantum mechanical calculations are adopted to handle commonly occurring metal ions in the binding pockets of proteins. BAPPL+ has parameters for five metal ions named Zn^{2+} , Mg^{2+} , Ca^{2+} , Mn^{2+} and Fe^{3+} .

$$\Delta G_{pred}^{\circ} = \Delta E_{ele} + \Delta E_{vdw} + \Delta E_{hyp} - T\Delta S_{conf}$$

 ΔE_{ele} is the electrostatic contribution to the energy, ΔE_{vdw} is the van der Waal term, ΔE_{hvp} is the hydrophobic contribution, and $T\Delta S_{conf}$ is the conformational entropy loss.

We have evaluated the performance of BAPPL+ on a large dataset and found that it outperforms other state-of-the-art scoring functions, achieving a high Pearson Correlation Coefficient of up to ~ 0.76 with low standard deviations. The increased performance results from the machine-learning model and the enlarged training dataset. Here we have used the **''Random Forest (RF)''** machine learning method as a regression model to calculate the binding affinity of protein-ligand complexes.

Availability: http://scfbio-iitd.res.in/bappl+/

ALMM12							PP	L	-
Home	About	Guide to use	Contact Us	IPR Rights					
THIS PAGE	E IS BEST V	IEWED IN MICRO	DSOFT EDGE AN	D <u>MOZILLA FI</u>	REFOX				
Singl		Single Structu ıre Calculation		O Multipl	e Stru	cture C	alculation		Search Results Job ID.
	Browse	Upload PDB file	2						
		✓ Select I	Ligand	0		Form	al Charge		
		✓ Select i	on						
		fy the metal							
• N	lone O	Zn OCa OF	e OMn OM	lg					
			E-mail address	(Optional)					
	Run BAPI	PL+ Reset							
			C	2022-2023, Pr Web	of B. Ja tool de	yaram 8 eveloped	k Co-workers by Manpree	. All rights re et Singh.	served.

Format Specification

BAPPL+ takes input in the standard PDB format containing **hydrogen added ligand.** The term PDB stands for Protein Data Bank. The PDB formatted file must have a .pdb extension. The formal charge of the ligand will be calculated automatically by the server. However, the user can also enter the value of formal charge using the '**Formal charge'** box for accurate binding affinity prediction. The reference ligand identifier in the complex must be in three-letter codes. Reference ligands are nonstandard residues that bind non-covalently to a macromolecule and are represented as heteroatoms in the PDB file. In the case of metal complexes, please ensure that your input file contains metal ions in addition to protein and ligand and specify the metal ions in the PDB file as per the following formats-

1. Non-metal protein ligand complex format

ATOM	5993	0	LEU	390	12.186	6.909	37.018	1.00	0.00	0
ATOM	5994	ОХТ	LEU	390	13.732	6.577	38.568	1.00	0.00	0
TER	5995		LEU	390						
HETATM	5995	С	DRG	391	-1.720	0.696	-1.775	1.00	0.00	С
HETATM	5996	н	DRG	391	-2.546	0.335	-2.394	1.00	0.00	н
HETATM	5997	H1	DRG	391	-1.996	0.526	-0.733	1.00	0.00	н

2. Metallo-protein ligand complex format (with Zn metal)

ATOM	5993	0	LEU	390	12.186	6.909	37.018	1.00	0.00	0
ATOM	5994	ОХТ	LEU	390	13.732	6.577	38.568	1.00	0.00	0
TER										
HETATM	3768	ZN	ZN2	488	64.301	50.558	15.004	1.00	9.79	ZN
TER										
HETATM	5995	С	DRG	391	-1.720	0.696	-1.775	1.00	0.00	С
HETATM	5996	н	DRG	391	-2.546	0.335	-2.394	1.00	0.00	н
HETATM	5997	H1	DRG	391	-1.996	0.526	-0.733	1.00	0.00	н

3. Metallo-protein ligand complex format (with Ca metal)

ATOM	5993	0	LEU	390	12.186	6.909	37.018	1.00	0.00	0
ATOM	5994	ОХТ	LEU	390	13.732	6.577	38.568	1.00	0.00	0
TER										
HETATM	3768	CA	CA2	488	64.301	50.558	15.004	1.00	9.79	CA
TER										
HETATM	5995	C	DRG	391	-1.720	0.696	-1.775	1.00	0.00	С
HETATM	5996	н	DRG	391	-2.546	0.335	-2.394	1.00	0.00	н
HETATM	5997	H1	DRG	391	-1.996	0.526	-0.733	1.00	0.00	н

4. Metallo-protein ligand complex format (with Mg metal)

ATOM	5993	0	LEU	390	12.186	6.909	37.018	1.00	0.00	0
ATOM	5994	ОХТ	LEU	390	13.732	6.577	38.568	1.00	0.00	0
TER										
HETATM	3768	MG	MG2	488	64.301	50.558	15.004	1.00	9.79	MG
TER										
HETATM	5995	С	DRG	391	-1.720	0.696	-1.775	1.00	0.00	С
HETATM	5996	н	DRG	391	-2.546	0.335	-2.394	1.00	0.00	н
HETATM	5997	H1	DRG	391	-1.996	0.526	-0.733	1.00	0.00	Н

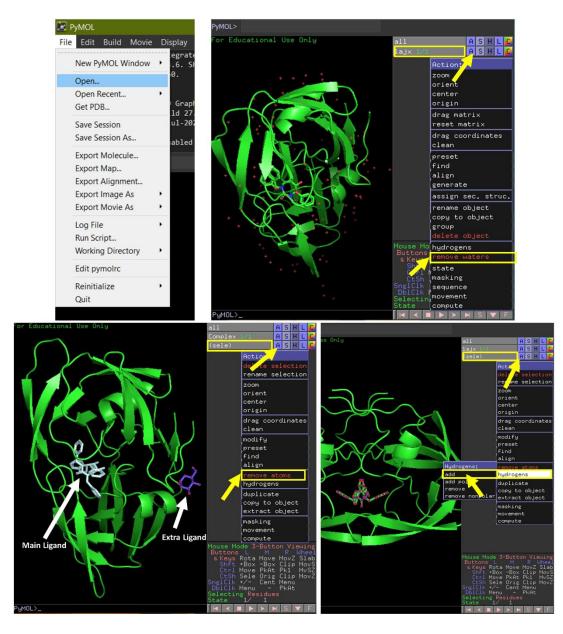
5. Metallo-protein ligand complex format (with Mn metal)

• • • • •										
ATOM	5993	0	LEU	390	12.186	6.909	37.018	1.00	0.00	0
ATOM	5994	ОХТ	LEU	390	13.732	6.577	38.568	1.00	0.00	0
TER										
HETATM	3768	MN	MN2	488	64.301	50.558	15.004	1.00	9.79	MN
TER										
HETATM	5995	С	DRG	391	-1.720	0.696	-1.775	1.00	0.00	С
HETATM	5996	н	DRG	391	-2.546	0.335	-2.394	1.00	0.00	н
HETATM	5997	H1	DRG	391	-1.996	0.526	-0.733	1.00	0.00	н
1										

6. Metallo-protein ligand complex format (with Fe metal)

ATOM	5993	0	LEU	390	12.186	6.909	37.018	1.00	0.00	0
ATOM	5994	ОХТ	LEU	390	13.732	6.577	38.568	1.00	0.00	0
TER										
HETATM	3768	FE	FE2	488	64.301	50.558	15.004	1.00	9.79	FE
TER										
HETATM	5995	С	DRG	391	-1.720	0.696	-1.775	1.00	0.00	С
HETATM	5996	Н	DRG	391	-2.546	0.335	-2.394	1.00	0.00	Н
HETATM	5997	H1	DRG	391	-1.996	0.526	-0.733	1.00	0.00	н

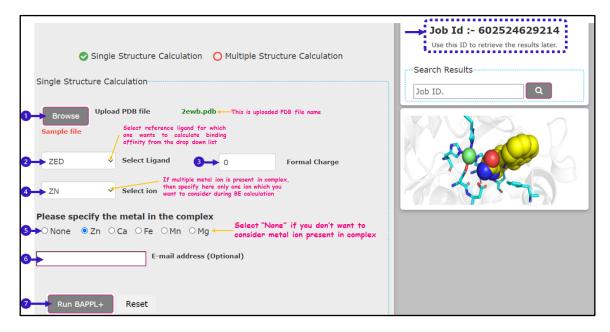
While submitting a job for multiple structures, submit a compressed file (.zip format) containing all the PDB files to be executed. Additionally, the user needs to provide a text file (.txt) (as shown below) containing the name of the complex, a formal charge of ligand, metal, or non-metal information (for non-metal XX and metal could be Zn, Ca, Mg, Mn, Fe) and ligand identifier. The text file contains space-separated information of protein name(s) (without extension .pdb), then the charge of ligand(s) followed by metal information, and finally ligand identifier as shown in template.txt below.


template.txt:

sample 0 XX DRG sample_zn 0 Zn DRG sample_ca 0 Ca PEG sample_mg +1 Mg BIF sample_mn +2 Mn DRG sample_fe 0 Fe DRG

File Preparation

It is advisable to clean the input file before submitting it to the BAPPL+. There are several ways to clean a PDB file. One is given below using PyMol (a molecular visualization tool)-

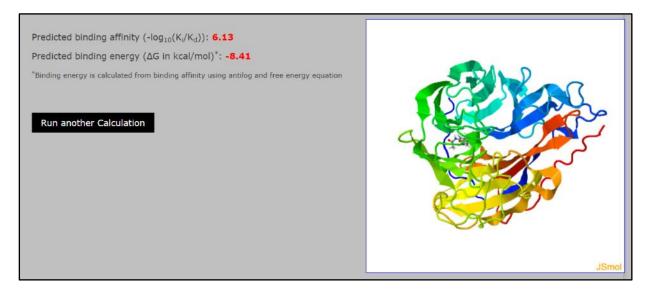

- Open PyMol and click on File tab.
- Select Open.
- Select the path and type the name of your protein file.
- **To remove water molecule from complex**, click on menu Action (A) located at the right corner and select remove waters.
- **To remove extra heteroatoms/ligand from complex**, select the heteroatoms by using left-click button of mouse. Now click on the menu Action (A) of section object and select remove atoms.
- To add hydrogen molecule in ligand, click on menu Action (A), select hydrogens, and click on add.

Job Submission

Job submission of single structure run:

First, upload the complex using the browse button in front of 'Upload PDB file', then select one reference ligand present in the complex from the drop-down menu. Verify the formal charge from the 'Formal charg' box. BAPPL+ will detect the metal ion present in the complex file and show it on the 'Select Ion' box. Sometimes, multiple metal ions may be present in a complex, in that case, choose a metal ion you want to consider during binding affinity (BA) prediction from the drop-down menu of the 'Select Ion' box. If one wishes to discard the metal ion during the binding affinity prediction, select 'None'. Now specify email id (optional) to get job completion notification and click on the 'Run BAPPL+' button to submit your work on the server. Users can also check the job status and result using the Job ID provided for each submitted job.

Job submission of Multiple Structure Run


For running BAPPL+ on multiple structures, click on the "**Multiple Structure Calculation**" option, then upload the compressed file (.zip) containing all the PDB files and a text file (.txt) (as described above template.txt) using the browse button in front of **'Upload Zip file.'** Now specify email id to get job completion notification and click on the **'Run BAPPL**+' button to submit your work on the server.

Sample files are also available on the website. Please check the sample for further help.

O Single Structure Calculation Multiple Structure Calculation	Job Id :- 1645857172 Use this ID to retrieve the results later.
MM BAPPL Calculation Provide the sample_multiple.zip Sample file C-mail address (Optional)	Job ID.
4 → Run BAPPL+ Reset	

It takes about 1-2 minutes for BAPPL+ to run a single structure calculation job. In some cases, the service time may increase to 5 minutes depending on the input file size and queue length. The result will be sent to the email id specified during job submission. If mail is not specified, the result can be retrieved by the **Job Id** provided after each job submission on the top right corner. Job ID can also be used to check your job status. The results are presented as binding affinity and binding energy (in kcal/mol) between the protein-ligand complexes.

Below is shown the result of the single structure calculation job-

Below is shown the result of the multiple structure calculation job-

Structures	Visualize	Predicted affinity (-log ₁₀ (K _i /K _d))	Predicted binding energy (ΔG in kcal/mol) [*]		
sample1	۲	5.77	-7.92		
sample2	۲	4.91	-6.74		
sample3	۲	4.55	-6.25		
sample_ca	۲	5.71	-7.84		
sample_mg	۲	8.10	-11.12		
sample_fe	۲	5.51	-7.57		
				J	JSmol