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Abstract We report here a computationally fast protocol for
predicting binding affinities of non-metallo protein–ligand
complexes. The protocol builds in an all atom energy based
empirical scoring function comprising electrostatics, van der
Waals, hydrophobicity and loss of conformational entropy of
protein side chains upon ligand binding. The method is designed
to ensure transferability across diverse systems and has been
validated on a heterogenous dataset of 161 complexes consist-
ing of 55 unique protein targets. The scoring function trained
on a dataset of 61 complexes yielded a correlation of
r = 0.92 for the predicted binding free energies against the
experimental binding affinities. Model validation and parameter
analysis studies ensure the predictive ability of the scoring func-
tion. When tested on the remaining 100 protein–ligand com-
plexes a correlation of r = 0.92 was recovered. The high
correlation obtained underscores the potential applicability of
the methodology in drug design endeavors. The scoring function
has been web enabled at www.scfbio-iitd.res.in/software/drugde-
sign/bappl.jsp as binding affinity prediction of protein–ligand
(BAPPL) server.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Two aspects determine the success of computer-aided struc-

ture-based ligand design [1–3] endeavors targeted to proteins:

the generation of reasonable ligand-binding modes through

sampling the vast conformational space, namely the docking

problem [4] and the identification of those binding modes that

correspond best to the experimentally given situation based on

reasonable estimates of binding affinities namely the scoring

problem [5].

Computational approaches which utilize the receptor struc-

ture information for estimating binding affinities [6–8] can be

classified into four major classes with respect to their

methodological background: (1) molecular simulation based
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approaches [9,10], (2) empirical/force field/additivity based ap-

proaches [11–13], (3) knowledge based approaches [14] and (4)

hybrid approaches. The basic idea behind molecular simula-

tion based approaches derives from statistical mechanics [15].

Explicit atomic level consideration of solvent molecules, ions

and flexibility of both the receptor and the ligand makes these

approaches compute intensive and limits the usage of simula-

tion strategies in screening large numbers of ligands against a

protein target. Additivity based approaches have given birth

to the field of scoring functions. The various scoring functions

have been summarized in Table 1. Force field based scoring

functions approximate the binding free energy of protein–

ligand complexes by a sum of van der Waals, electrostatics

and other contributions. The basic assumption underlying

empirical/force field/additivity based approaches is that differ-

ent contributions to free energy of binding can be calculated

separately and that they are additive [16]. Knowledge based

approaches draw upon statistical analyses of a large number

of protein–ligand complexes present in the structural reposito-

ries [17]. Based upon the current trend in virtual screening

methodologies some requirements for a good scoring function

are: structure prediction, affinity prediction, virtual screening

and speed [18]. To circumvent certain imperfections of current

scoring functions, consensus scoring [19] has been introduced

which combines information from different scoring functions

to balance errors in single scores. A combination of molecular

simulation and additivity approximation based approaches

called hybrid methods are also in vogue to obtain the free

energy estimates of protein–ligand association. These mainly

include the linear interaction energy method (LIE) [20],

MMPBSA [21] and MMGBSA [22,23]. These approaches have

been developed to estimate binding free energies rather quickly

but with reasonable accuracy. Databases like LPDB [24] and

PLD [25] providing experimental binding affinities have

proven to be extremely valuable for the development and

validation of scoring functions.

Comparative evaluations of different docking programs in

combination with various scoring functions for their applica-

tions in virtual screening have been carried out recently

[26,27] and results show that many of the popular scoring func-

tions are able to select out correct docked from misdocked

structures, but correlation with the experimental binding affin-

ity still remains a major limiting factor in virtual screening for

drug discovery.

In this study, we report a computational protocol which

incorporates an all atom energy based empirical scoring

function for the prediction of binding affinities of non-metallo
blished by Elsevier B.V. All rights reserved.
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Table 1
Some popular scoring functions for estimating binding affinities of protein–ligand complexes

S. no. Scoring function Method Training set Test set r

1 DOCK [51] Force field – – –
2 EUDOC [52] Force field – – –
3 CHARMm [53] Force field – – –
4 AutoDock [54] Force field – – –
5 DrugScore [55] Knowledge – – –
6 SMoG [56] Knowledge – 36 0.79
7 BLEEP [57] Knowledge – 90 0.74
8 PMF [58] Knowledge – 77 0.78
9 DFIRE [59] Knowledge – 100 0.63
10 SCORE [60] Empirical 170 11 0.81
11 GOLD [61] Empirical – – –
12 LUDI [62] Empirical 82 12 0.83
13 FlexX [63] Empirical – – –
14 ChemScore [64] Empirical 82 20 0.84
15 VALIDATE [65] Empirical 51 14 0.90
16 Ligscore [66] Empirical 50 32 0.87
17 X-CSCORE [67] Empirical (consensus) 200 30 0.77
18 GLIDE [68] Force field/empirical – – –
19 Present work Force field/empirical 61 100 0.92

The method used, the number of complexes considered in the dataset for training and testing and the final correlation coefficient (r) obtained on the
test set against experimental binding affinities.
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protein–ligand complexes. The scoring function presented is

validated on a heterogenous dataset of 161 protein–ligand

complexes comprising 55 unique proteins and is fast enough

to be used in virtual screening protocols.
Table 2
Some physicochemical properties with their observed limits in the 161
protein–ligand complex dataset

S. no. Descriptor/physicochemical property Limits

Ligand
1 Number of rotatable bonds 0–32
2 Hydrogen bond donors 0–18
3 Hydrogen bond acceptors 0–26
4 Ligand net charge (�)5–(+)1
5 C logP [69] (�)11–(+)10
6 Molecular weight 95–800
7 Number of heavy atoms 5–62

Protein
8 Number of unique proteins 55
9 Number of residues 105–833

Complex
10 Experimental binding affinity (kcal/mol) (�)15.57–(�)2.03
11 Net charge on the complex (�)28–(+)11
12 Resolution (Å) 1.25–3.16
2. Theory and methodology

The scoring function employed considers the non-bonded

energy of a protein–ligand complex as a sum of three energy

terms – electrostatic, van der Waals and hydrophobic, termed

here as Model I

E ¼
X

Eel þ Evdw þ Ehpb. ðIÞ

Here, E is the total non-bonded energy, Eel is the electrostatic

contribution to the energy, Evdw is the van der Waal term,

Ehpb is the hydrophobic contribution and the summation

runs over all the atoms of the protein–ligand complex. De-

tails of the function and individual terms are provided else-

where ([28–32] and references therein). In a nutshell, the

electrostatic contribution to the interaction energy is com-

puted via Coulomb�s law with a sigmoidal dielectric function.

The van der Waals interactions are modeled using a (12, 6)

Lennard-Jones potential between the atoms of the protein

and ligand. The hydrophobic interactions are captured via

the Gurney parameter approach, which provides a computa-

tionally simple means for treating desolvation effects. The en-

ergy function described above enables evaluation of the total

non-bonded interaction energy of a protein–ligand complex

in aqueous environment from the Cartesian coordinates of

all the atoms. We have previously examined and found this

scoring function to yield satisfactory energetics on base pairs

of DNA [28], alpha helices [29], ion atmosphere around DNA

[33]. Recently, we have used the same function in protein

structure prediction studies where the function is able to dis-

tinguish native from the decoys [34]. In the DNA-drug stud-

ies, the function has shown an excellent correlation (r2 = 0.95)

with the experimental DTm values [35].
2.1. Dataset description

There are about 3500 proteins, complexed with ligands,

substrate, prosthetic groups and metal ions in the protein

databank (RCSB) [16]. For the present study, we focused

on non-metallo protein–ligand complexes and prepared a

dataset of 161 complexes (Table I(A) and (B) Supplementary

information) as described in the dataset preparation section.

The experimental binding free energies for these complexes

are available in the public domain databases like LPDB

[24] and PLD [25]. A description of the dataset with observed

limits of the various descriptors/physicochemical properties is

given in Table 2. The dataset contains 55 unique proteins like

trypsin, HIV-I protease, alpha thrombin, DHFR, etc., brac-

keting a variety of forms and functions. Table 2 shows that

the dataset in consideration is heterogeneous enough with re-

spect to the ligand, protein and complex descriptors/physico-

chemical properties to facilitate a rigorous evaluation of the

performance of the proposed protocol and its extensions to

other systems.
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2.2. Dataset preparation

Fig. 1 describes a general protocol for the preparation of

a non-metallo protein–ligand complex in a force field

compatible manner. The protocol is divided into the follow-

ing steps:

1. Selection of the complex: The X-ray coordinates of the com-

plex are extracted from the RCSB and crystallographic

water molecules are removed.

2. Parameterization of the ligand: The ligand coordinates are

extracted from the protein–ligand complex. Hydrogen

atoms are added keeping the same ionization states of the

atoms as given in the corresponding literature for each com-

plex. The ligand is then AM1 geometry optimized followed

by HF/6-31G\ ab initio level calculations to obtain the elec-

trostatic potential of the ligand using GAMESS [36]. RESP

fitting [37] is then applied on the electrostatic potentials to

derive the equivalent partial atomic charges for the ligand.

GAFF force field [38] is used to assign the atom types,

bond, angle, dihedral and van der Waals parameters for

the ligand.

3. Parameterization of the protein: Hydrogen atoms are added

and the protonation states of the charged residues inside the

active site of the protein are adapted as mentioned in the lit-

erature for each complex. Assignment of force field param-

eters for protein atoms is done using the Cornell et al. [39]

force field.

4. Energy minimization of the complex: The protein–ligand

complex is energy minimized in vacuum and with explicit

solvent molecules separately using AMBER [40] to remove

any clashes from the structure. For vacuum minimizations,

1000 steps of steepest descent and 1500 steps of conjugate

gradient are carried out. Water minimization is performed

using a truncated octahedron type solvate box with an

8.0 Å cutoff. Minimization with explicit solvent is per-

formed with first restraining the solute and minimizing only

the waters so as to relax any kind of gaps present in them.

The minimization here involves 500 steps of steepest des-
Fig. 1. A computational flowchart adopted for computing binding
affinities of protein–ligand complexes.
cent and 500 steps of conjugate gradient. After the solvent

is relaxed, an all atom 2500 steps minimization similar to

the vacuum minimization is performed.

A protein–ligand complex prepared in the above manner

acts as an input for the binding affinity estimates.
3. Results and discussion

The calculated protein–ligand interaction energies using

Model I for all the 161 complexes (vacuum minimized) are cor-

related with the experimental binding free energies as shown

(Fig. 2). The correlation coefficient r is 0.85 and the RMS error

is ±1.71 kcal/mol. Use of explicit solvent during energy mini-

mization gives an r = 0.84 for the 161 dataset. Inclusion of ex-

plicit solvent does not appear to affect the overall correlation.

However, it greatly increases the computational time involved

in minimization restricting its applicability in virtual screening

programs in structure-based drug design.

Within the framework of the protocol proposed, we at-

tempted to improve the correlation by adopting a more de-

tailed solvation treatment using the Eisenberg–Mclachlan

approach [41]. Eisenberg–Mclachlan model has only a limited

set of five basic atom types found in proteins, whereas small

drug molecules have a variety of atom types and defining them

with a limited set would not account for their diversity. Also,

the atomic solvation parameters (ASP) were derived using

water/octanol partition coefficients of 20 amino acids, which

poses a very limited potential for the transferability of these

parameters in calculating ligand binding free energies. To cir-

cumvent the abovementioned problems, we made two modifi-

cations to the approach. In the first step, we have combined the

atom types in Cornell et al. [39] force field for proteins/nucleic

acids with the atom types in GAFF [38] force field for small

molecules. This gives us a common set of 22 atom types (Table

3) with the advantage that, any atom of protein or ligand can

be defined using this set ensuring transferability of derived

parameters for organic and biological molecules. The second

modification involves considering the loss in surface area of

individual atoms upon binding instead of taking their surface

areas, reflecting the changes in binding process. The solvent

accessible surface area of the protein, ligand and the complex

is calculated using the Lee and Richard�s algorithm [42] with a

probe radius of 1.4 Å and is further divided into the surface
Fig. 2. Correlation between the calculated interaction energies (Model
I) and experimental binding free energies for 161 protein–ligand
complexes.



Table 3
A description of the 22 derived atom types with their atomic desolvation parameters kcal/mol/Å2 (ADP)

S. no. Atom type Symbol Description Parameters

1 C1 sp2 carbonyl 0.1209
2 C2 sp carbon 0.2522
3 C3 sp2 carbon aliphatic �0.0283
4 C4 sp2 carbon aromatic 0.0141
5 C5 sp3 carbon 0.1276
6 HL Halogens (Fl, Cl, Br, I) 0.0081
7 H1 Hydrogen bonded to aliphatic carbon 0.0005
8 H2 Hydrogen bonded to aromatic carbon �0.0040
9 H3 Hydrogen bonded to nitrogen 0.0051

10 H4 Hydroxyl group 0.0013
11 H5 Hydrogen bonded to sulfur 0.0595
12 N1 sp2 nitrogen in amide groups �0.0232
13 N2 sp2 nitrogen in aliphatic systems �0.0311
14 N3 sp2 nitrogen in aromatic systems �0.0111
15 N4 sp nitrogen 0.0037
16 N5 sp3 nitrogen �0.0478
17 N6 Amine nitrogen connected to one or more aromatic rings 0.0077
18 O1 Oxygen with one connected atom �0.0074
19 O2 Oxygen in hydroxyl group �0.0094
20 O3 Ether and ester oxygen �0.0147
21 P Phosphate 0.7097
22 S Sulfur 0.0109
23 a Empirical coefficient for electrostatics 0.1049
24 b Empirical coefficient for van der Waals 0.1281
25 k Empirical coefficient for conformational entropy �0.5385
26 d Constant (Intercept) 0.2060

Empirical coefficients for electrostatics (a), van der Waals (b), conformational entropy (k) and the regression constant (d) are also given.
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areas of individual atoms. van der Waals radii of each atom

has been adjusted according to the modified Generalized Born

model [43], which is consistent with the Cornell et al. force

field. Total surface area of an atom type is obtained by sum-

ming up all the contributions from that atom type. The net loss

in surface area of an atom type upon binding is computed as

DALSA ¼
X

Acomplex �
X

Aprotein �
X

Aligand;

where DALSA is the net loss in surface area of an atom type A.

Acomplex, Aprotein and Aligand are the total surface areas of atom

type A in complex, protein and ligand, respectively.

There is an entropic cost associated with any bimolecular

interaction that is a consequence of degrees of freedom of mo-

tion lost when two molecules are rigidly constrained within a

complex [44]. An important contributor to the energetics of

protein folding and protein–ligand binding is the loss of con-

formational entropy (DSCR) of the protein side chains [45].

We have utilized here an empirical scale of side chain confor-

mational entropy developed by Pickett and Sternberg [46]. In

this procedure relative accessibility (RA) is used as a measure

to determine whether an amino acid side chain is sampling dif-

ferent rotamers or is buried in the folded state. If the

RA > 60% then the side chain is free to sample all the confor-

mations and there is no loss of conformational entropy upon

folding. If the RA < 60% then the side chain is buried in the

folded state and there is an entropic penalty upon folding,

where

RAfolding ¼
calculated accessible surface area of side chain ðfoldedÞ

surface area of that side chain in extended state ðunfoldedÞ .

We have employed RA as a measure to determine the loss of

conformational entropy of protein side chains in protein–li-

gand binding and defined it as
RAbinding ¼
calculated accessible surface area of side chain in bound form

calculated accessible surface area of side chain in unbound form
.

A folded protein is equivalent to an unbound form. Side chains

with RAfolding > 60% and RAbinding < 60% are considered to

have a loss of conformational entropy. The values from the

empirical scale [46] for all such residues are added to get a final

estimate of the conformational entropy (DSCR) loss upon bind-

ing.

Following this approach, our empirical free energy function

takes the following form (Model II):

DG ¼ aðEelÞ þ bðEvdwÞ þ
X22

A¼1

rADALSA þ kðDSCRÞ þ d; ðIIÞ

where DG is the binding free energy in kcal/mol, Eel and Evdw

have been defined previously. DALSA is the loss in surface area

of the atom type A. We define rA as the atomic desolvation

parameter (ADP) in kcal/mol/Å2 for an atom type A. DSCR

is the loss in conformational entropy of protein side chains

upon binding. a, b and k are the empirical coefficients for elec-

trostatics, van der Waals and conformational entropy respec-

tively and d is a constant. Model fitting is performed using

multiple linear regression to obtain the empirical parameters

for Model II. Eel, Evdw, DALSA and DSCR serve as independent

variables and experimental binding free energies (DG) serve as
dependent variables.

3.1. Model validation

Model validation is a crucial aspect of any model develop-

ment technique and establishes the predictive power of the

model. Recent studies [47,48] have shown that, in addition to

leave-one-out (LOO) cross-validation (q2) procedure, valida-

tion of the model using an external test set of compounds is



Fig. 4. Correlation between the predicted binding free energies (Model
II) and experimental binding free energy for the 100 protein–ligand
complex test set.
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necessary. For a robust validation, the training and test sets

must have a uniform distribution of the representative points

in the multidimensional descriptor space. In addition the mod-

el should also satisfy the following conditions:

1. q2 > 0.5;

2. R2 > 0.6;

3.
ðR2�R2

0
Þ

R2 < 0:1 and 0.85 6 K 6 1.15;

4.
ðR2�R02

0
Þ

R2 < 0:1 and 0.85 6 K 0
6 1.15;

5. jR2
0 � R02

0 j < 0:3.
All the above terms have been explained in Table II of the

Supplementary information.

Keeping these issues in consideration, we started with the

leave-one-out cross-validation procedure to make the training

and test sets. We used the experimental binding free energy of

the complexes as a descriptor for their uniform distribution

across multidimensional descriptor space in the training and

test sets. A training set of 61 protein–ligand complexes was ob-

tained giving a correlation coefficient r = 0.92 for the predicted

binding affinities against the experimental binding affinities

(Fig. 3). A graphical residual analysis plot (Fig. S(I) of the

Supplementary information) of the standardized residuals

against the predicted binding affinities for the training set

shows a uniform distribution of the points above and below

the base line, suggesting that the model fits the data well.

The five statistical tests defined above in addition to SPRESS

and RMS error were then performed on the training set. The

results shown in Table 4 indicate that the model passes all

the validation tests. The final validation was performed

on the external test set of 100 protein–ligand complexes using

the parameters obtained from the training set (Table 3). A cor-

relation coefficient of r = 0.92 was obtained on the test set

(Fig. 4) between the experimental binding free energies and

predicted binding free energies, indicating the robustness of

the model and the parameters obtained in predicting the bind-

ing affinities of protein–ligand complexes. We further tested

the ability of the scoring function in the prediction of relative
Fig. 3. Correlation between the predicted binding free energies (Model
II) and experimental binding free energy for 61 protein–ligand complex
training set.

Table 4
Statistical tests and their respective values for the training set

Statistical test q2 R2 ðR2�R2
0
Þ

R2

ðR2�R02
0
Þ

R2
K K 0

Value 0.85 0.85 �0.18 �0.17 1.00 0.9
binding affinities of a series of ligands against the same protein

target. From the 100 test set, we selected Alpha Thrombin and

HIV-I protease which have more than six distinct ligands.

Individual correlation studies on these groups of complexes

(Fig. 5A and B) show an average correlation coefficient of

r = 0.86. The training and the test set PDB IDs of the com-

plexes along with their experimental and predicted binding free

energies and component-wise separation of the energetics are

provided in Table I(A) and (B) of the Supplementary informa-

tion.

3.2. Parameter analysis

The empirical scoring function proposed in Model II has 25

independent variables (electrostatics, van der Waals, loss in

conformational entropy and 22 atom types for hydrophobicity

corresponding to a combined GAFF [38] and AMBER force

field [39]) and therefore 25 empirical parameters (Table 3).

Fig. S(II) (Supplementary information) gives a percentage wise

occurrence of each variable in the 161 dataset. The figure

shows that every complex has a net favorable electrostatic

and van der Waals contribution towards binding. 24% of the

complexes show a loss in conformational entropy of protein

side chains upon ligand binding. Of the 22 atom types C1,

C4, C5, H1, H2, H3, H4, N1, O1 and O2 occur in more than

90% of the complexes. S, O3, N5, N3 and N4 are present in less

than 50% of the complexes. C2, halogens (F, Cl) and P are

present in very few complexes (less than 10%).

To assess the effect of each empirical parameter (Table 3) on

the scoring function (Model II), we performed a sensitivity

analysis of the 25 empirical parameters. Based upon one-fac-

tor-at-a-time (OAT) methods of local sensitivity analysis [49],

we varied all the parameters one at a time in the range of

�0.8 to +0.8, with an increment of 0.0001, keeping the rest

of the parameters fixed. The correlation (r) between the exper-

imental binding free energies against the predicted free energies

is calculated for all the 161 complexes in the dataset with each

increment (Fig. S(III) Supplementary information). Using

Fig. S(III), we classify the parameters into three categories;
jR2
0 � R02

0 j SPRESS (kcal/mol) RMS error (kcal/mol)

8 0.0038 1.88 ±1.43



Fig. 5. Correlation for the relative binding affinities of series of ligands against (A) Alpha Thrombin and (B) HIV-I Protease.

6664 T. Jain, B. Jayaram / FEBS Letters 579 (2005) 6659–6666
(1) highly sensitive: parameters which have a high impact on

correlation; a, b, C4, HL, H1, H2, H3, H4, N3, N6, O1, O2,

S (2) sensitive: parameters which have a moderate effect on

the correlation; C1, C3, N1, N2, N4, N5, O3 and (3) less sen-

sitive: parameters which have a very less effect on the correla-

tion; k, C2, C5, H5, P.

Although the parameters are empirical (Table 3), the model is

phenomenological and is in accord with the thermodynamics of

protein–ligand binding. Eel and Evdw (namely the electrostatics

and van derWaals components of interaction energy) have neg-

ative signs and their empirical parameters a and b have positive

signs, respectively, demonstrating a net favorable contribution

towards binding. DSCR has positive sign and its parameter has

negative, reflecting that the net loss in conformational entropy

of protein side chains is an unfavorable component towards

binding. The loss in surface area of all the 22 atom types has

a negative sign, indicating that the net loss in surface area is

favorable for binding. However, the atomic desolvation param-

eters for these atom types have different contributions. Car-

bons, sulfur and phosphorous have positive desolvation

parameters, which shows that desolvation of non-polar atoms

is favorable for binding. Oxygens and nitrogens have a negative

sign on the empirical parameters, indicating that desolvation of

polar atoms is unfavorable for binding. Desolvation parame-

ters for halogens and hydrogens have a positive sign, suggesting

that their desolvation is favorable for binding.

We performed a component-wise analysis of the binding free

energy for the 161 complex dataset (Fig. S(IV) Supplementary

information). The figure shows the contribution of each compo-

nent and their additive sums and their effect on the correlation.

van der Waals turns out to be the largest contribution for pro-

tein–ligand binding, contributing 0.79 to correlation. This sug-

gests that structural complementarity/packing in particular is

an absolute prerequisite for specific binding. Adding electrostat-

ics contribution to van der Waals component further increases

the correlation to 0.86, suggesting the importance of hydrogen

bonding/ionic interactions in providing specificity to the com-

plex formation. It also suggests the importance of assigning

accurate charges for the ligand and protein atoms. Adding

hydrophobicity contribution to this further increases the corre-

lation to 0.91, reflecting the importance of solvent in protein–li-

gand binding. Adding the loss in conformational entropy

increments the correlation to 0.92 reflecting the contribution

of loss of protein side chain conformation upon ligand binding.

In this study, a computationally tractable protocol using an

empirical all atom energy based scoring function (Model II) is
presented and its performance in predicting the binding affini-

ties of protein–ligand complexes is apprised. The empirical free

energy function comprises contributions from electrostatics

with a sigmoidal dielectric function, van der Waals, hydropho-

bic and loss in conformational entropy of protein side chains.

Model validation results prove that the proposed empirical en-

ergy function can be easily used for prediction studies. The

methodology is sufficiently fast for usage in virtual screening

protocols. The results suggest that, partial atomic charges for

ligand, correct protonation states for ligand and protein resi-

dues in the active site, compatibility between the parameters

obtained from GAFF force field for ligand and AMBER force

field for proteins, the dielectric function employed, the desol-

vation parameters for each atom type and energy minimization

protocol are some of the important issues which have strength-

ened the empirical scoring function in obtaining a good corre-

lation between the experimental and the predicted binding

affinities of protein–ligand complexes from ‘‘single-point’’ cal-

culations. Heterogenity of the dataset on which the protocol

has been validated and parameters obtained promises transfer-

ability to protein–ligand systems from different families of pro-

teins, with different active sites and a variety of ligand

architectures. A high correlation coefficient (r = 0.92) in com-

parison with other scoring functions in Table 1 suggests that

the protocol possesses reasonable accuracy in the prediction

of ligand binding affinities against protein targets. An average

correlation coefficient of r = 0.86 for different ligands against

the same targets indicates the ability of the protocol and scor-

ing function to predict relative binding affinities of ligands. The

method could be trained for a specific target with improved

correlation but at the expense of transferability to other tar-

gets. While these results may be by far the best obtained on

a large dataset with an atomic level energy based scoring func-

tion not customized to any particular system, further improve-

ments are essential for keeping the errors low in the estimated

binding affinities. A closer examination of the missing compo-

nents in the scoring function in relation to binding free energies

is the role of explicit waters in the active site besides thermal

averaging. Future work would involve extensions of the proto-

col for predicting binding affinities involving metallo-proteins,

where charges of the atoms around the ion in the active site

play a critical role.

The empirical energy based scoring function (Model II) has

been web enabled at www.scfbio-iitd.res.in/software/drugde-

sign/bappl.jsp as binding affinity prediction of protein-ligand

(BAPPL) server. The server provides two methods as options.

http://www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp
http://www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp
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In Method 1, the input is an energy-minimized protein–ligand

complex with hydrogens added, protonation states, partial

atomic charges and van der Waals parameters assigned.

The application then computes the binding free energy of

the complex using the specified parameters. In Method 2,

the input is an energy-minimized protein–ligand complex with

hydrogens added and protonation states assigned. The net

charge on the ligand needs to be specified. The application

derives the partial atomic charges of the ligand using the

AM1-BCC procedure [50] and GAFF force field [38] for

van der Waals parameters. Cornell et al. [39] force field is

used to assign the force field parameters for proteins. Binding

free energy is estimated as in Model II and reported.

Although the empirical scoring function has been calibrated

using the HF/6-31G\/RESP equivalent partial atomic charges,

we have provided the AM1-BCC procedure [49] for deriving

partial atomic charges of ligands for Method 2 because this

procedure is fast and yields a correlation of r = 0.91 on the

161 complex dataset. The coordinates along with all the

parameters for binding affinity estimates prepared as de-

scribed in Fig. 1 are also made accessible at the website at

www.scfbio-iitd.res.in/software/drugdesign/proteinliganddata-

set.htm.
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