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Impressive advances in the applications of bioinformatics for protein structure prediction coupled with growing
structural databases on one hand and the insurmountable time-scale problem with ab initio computational
methods on the other continue to raise doubts whether a computational solution to the protein folding problem—
categorized as an NP-hard problem—is within reach in the near future. Combining some specially designed
biophysical filters and vector algebra tools with ab initio methods, we present here a promising computational
pathway for bracketing native-like structures of small alpha helical globular proteins departing from secondary
structural information. The automated protocol is initiated by generating multiple structures around the loops
between secondary structural elements. A set of knowledge-based biophysical filters namely persistence length and
radius of gyration, developed and calibrated on approximately 1000 globular proteins, is introduced to screen the
trial structures to filter out improbable candidates for the native and reduce the size of the library of probable
structures. The ensemble so generated encompasses a few structures with native-like topology. Monte Carlo
optimizations of the loop dihedrals are then carried out to remove steric clashes. The resultant structures are
energy minimized and ranked according to a scoring function tested previously on a series of decoy sets vis-à-vis
their corresponding natives. We find that the 100 lowest energy structures culled from the ensemble of energy
optimized trial structures comprise at least a few to within 3–5 Å of the native. Thus the formidable ‘‘needle in a
haystack’’ problem is narrowed down to finding an optimal solution amongst a computationally tractable
number of alternatives. Encouraging results obtained on twelve small alpha helical globular proteins with the
above outlined pathway are presented and discussed.

1 Introduction

The growing genome knowledge1,2 and the pressing necessity
for the discovery of new drug targets for life threatening
diseases bring the protein folding problem3–29 to center stage
with the expectation of an early solution either via theory or
experiment or both.30,31 Investigations on protein folding
pathways32–35 have helped in redesigning proteins36–38 and in
understanding how mis-folding can lead to disorders such as
Alzheimer’s and Parkinson’s diseases.39–46 Protein structure
prediction techniques, range from 2D lattice models to atomic
level ab initio methods to comparative modeling. The ultimate
scientific challenge addressed by all these studies is to under-
stand at a molecular level as to how proteins fold to their
unique 3D conformations, starting from sequence information
alone. Technology beckons to the development of predictive
tools for biocatalyst design and nanobiomachines in some of
the most significant impending contributions of protein folding
to mankind.

The current computational strategies for protein structure
prediction are either database dependent such as comparative
modeling which includes homology modeling47 and fold re-
cognition techniques48 or ab initio49 in nature. Comparative
modeling approaches aim to propose plausible structures
utilizing a priori sequence and structural knowledge of related
proteins. With large amounts of genome and proteome data
accumulating via sequencing projects, comparative modeling

has become the method of choice to characterize sequences
where related representatives of a family exist.50–55 Ab initio
protein folding endeavors, on the other hand start with the
amino acid sequence information and attempt to attain the
fully folded native form consistent with the global free energy
minimum.56–60 Simulating a multi-dimensional surface and
locating the global minimum on it, is a task common to a
wide array of optimization problems in physics, chemistry,
biology, atmospheric sciences and economics among others.
The main focus in ab initio methodologies applied to proteins
had been on understanding the protein structure and dy-
namics21,57,61–73 and the various pathways/mechanisms in-
volved in the folding of proteins.18,32,35,74–84

Structure prediction via ab initio attempts broadly evolved
along two lines. The first strategy involves generating a multi-
tude of possible structures at the atomic level sampling the vast
configurational space either stochastically or deterministically
and ranking all these conformations according to free energy
and locating the global minimum, which corresponds to the
native.56–60 Conformational searches can be performed using
systematic approaches85 or random search methods in Carte-
sian86,87 or dihedrals space,88,89 genetic algorithms,90 orthogo-
nal latin square91,92 and various other methods.93–107 Empirical
and free energy functions in this regard help in locating the
most preferred conformation under the prescribed external
constraints. Structure prediction attempts using distance geo-
metry approach108,109 incorporating experimental information
in the form of inter-residue distances in minimization proce-
dures,110,111 metric matrix distance geometry112 for generating
native-like folds, and scoring functions such as residue pair
potentials, hydrophobicity function113 have shown to select

w Electronic supplementary information (ESI) available: PDB codes of
proteins used in the study. See http://www.rsc.org/suppdata/cp/b5/
b502226f/
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native-like structures. Hierarchical approaches,114,115 build up
procedures93,116–119 and simulated annealing techniques120–123

as well as Monte Carlo124,125 methods have been used exten-
sively for conformational sampling of proteins. A few other
initiatives in this area are also reported in the literature.126,127

The second strategy for ab initio protein structure determi-
nation involves simulating the folding pathway of the poly-
peptide chain by solving Newton’s equation of motion. Early
simulation techniques evolved from reduced representations of
protein molecule,128–133 along with continuum models for the
solvent.134 Increase in computational power and efficiency has
made possible explicit all-atom treatment of protein with
solvent effects taken implicitly or explicitly.135–137 It is surmised
that the last stages in protein folding involve side chain
ordering into well defined and closely packed structures and
that molecular dynamics simulations with explicit solvent
could be used as an end game. Ab initio structure prediction
of small proteins using database driven Rosetta server138 for
generating 3D constructs of polypeptide chains and explicit
solvent MD simulations on selected structures vividly demon-
strates the successful marriage of bioinformatics with ab initio
methods. Although, limited only by the computational expe-
diencies for millisecond to second long molecular dynamics
simulations, ab initio methods are the choice for a rigorous
solution to the problem, the need for faster and smarter
methods for structure prediction cannot be overemphasized.
Since protein structure prediction is a problem largely dealing
with main chain and side chain dihedrals, prediction accuracies
critically depend upon generation of proper rotamer orienta-
tions and quality of the force-fields. Attaining atomic level
accuracy with correct native-like topology is a challenge till
date.

Of particular interest in this regard are methods based on a
combination of bioinformatics tools and conformational sam-
pling procedures for prediction of native-like topologies,
molecular dynamics simulations for side-chain packing and
refinement, and free energy analyses for accurate quantitative
estimates, which have the potential for automation and im-
plementation in cluster/grid computing modes. We have
adopted a combination approach i.e. generate a linear chain
from sequence, pre-build the secondary structures, and reduce
the search space of the tertiary structures via usage of knowl-
edge-based biophysical filters. In the design of these biophysi-
cal filters too, either one employs the available data directly to
set bounds for rejecting structures, or one may convert the
existing structural data to a well established physico-chemical
model and extract limits for acceptance/rejection of structures.
We have chosen the latter strategy. Since the overall goal of the
protein structure prediction attempts is to arrive at the tertiary
structure starting from the amino acid sequence, the protein
structure prediction problem is subdivided for computational
convenience into secondary structure prediction from the
sequence, overall tertiary fold prediction from the secondary
structure and finally side chain packing. At this point, our
emphasis is to go from the secondary structure to the fully
folded tertiary structure or at least native-like decoys. In this
article, we propose a computational pathway (Fig. 1) from
secondary structure to arrive at tertiary fold for alpha helical
globular proteins comprising less than 100 amino acids. Re-
sults obtained on twelve proteins investigated to elicit a proof
of concept are extremely encouraging.

2 Methodology

The overall strategy consists of nine steps. The first two steps
involve the formation of a representative structure for the
polypeptide chain from amino acid sequence with the second-
ary elements in place. The third step involves generation of a
large number (B105 to 106) of trial structures with a systematic
sampling of the conformational space of loop dihedrals. These

structures are screened through persistence length and radius
of gyration filters, developed for the purpose of reducing the
number of improbable candidates in the fourth step. At this
stage, the ensemble of trial structures is brought down to a
manageable number. The resultant structures are refined by a
Monte Carlo sampling in dihedral space to remove steric
clashes and overlaps involving atoms of main chain and side
chains in the fifth step. In the next two steps the structures are
energy minimized and ranked using an empirical scoring
function and the lowest 100 energy structures are selected. It
is noticed that, in all the systems studied, native-like structures
to within an RMSD of 3–5 Å of the native are bracketed within
these 100 structures. Metropolis Monte Carlo simulations
conducted on each of the 100 structures in the final step are
noticed to improve the energy ranking of the native-like
structures further. Each of these steps is explained in detail
below.

(1) From sequence to generation of 3D representation of a

linear polypeptide chain

Based on the sequence information provided for a given
protein, templates of amino acids139 are joined with each other
to generate an extended polypeptide chain. The primary goal
here is to convert sequence information into a 3D structure
with a specification of the Cartesian coordinates of all the
atoms of the main chain and side chains.

(2) From linear chain to structure with preformed secondary

structures

In the proposed pathway, we start from the secondary struc-
ture information from the native PDB structure, as the

Fig. 1 A computational pathway for bracketing native-like structures
of small alpha helical globular proteins.
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experimental structure in each case is available. Bioinformatics
tools can be utilized where experimental information is not
available. The linear segments of polypeptide chain are con-
verted to the corresponding secondary structures using data-
base dihedrals. The main-chain Ramachandran angle (F,C)
analysis and the side-chain angle (w1, w2, w3) analysis for each of
the twenty amino acids carried out for this purpose are given in
Tables 1 and 2. This analysis was done on B1000 monomeric
globular proteins taken from the PDB,140 for helix, sheet and
loop regions. The criteria for obtaining the dataset include
absence of metal ions and disulfide linkages and a resolution
below 2.0 Å. The proteins are non-homologous and selected
from various functional classes including hydrolases (286),
isomerases (31), lyases (44), ligases (16), oxidoreductases
(108), transferases (122) and non-enzymes (406), the number
in parenthesis indicates the number of proteins in each class.
According to structural classification, the proteins have been
divided into three classes namely alpha helical (96), beta sheet
containing (22) and mixed type (895). The PDB codes of all the
proteins are provided as supplementary information. The
averaged main-chain dihedral values along with standard
deviations are given in Table 1(a). It is observed that the
average values of dihedrals in the helix region do not differ
much from those depicted in the original Ramachandran
plots141 i.e. �571 for F and �471 for C for the right handed
a-helix. Comparison of F and C values for the sheet region
shows that the values obtained from the database are more
widely spread, which was expected because these values include
both parallel as well as antiparallel b-sheets. The F and C
values for the loop regions showed a large standard deviation.
This is expected because of the flexible nature of the loop
regions. Average dihedral values for the loop regions are
therefore less reliable. So frequency distributions for the F
and C for this region were generated and most frequently
occurring values were used for the loop region (given in Table
1(b). Though many rotamer libraries142–150 are available in the
public domain, we have developed a backbone independent but

secondary structure dependent library for side chain dihedrals
with a large dataset of proteins and resolution less than 2 Å.
For both the helix and loop regions most frequently occurring
values were incorporated (Table 2(a) and 2(b)).

(3) Trial structure generation

In the present study, we have opted for a systematic explora-
tion of the conformational space of each loop dihedral follow-
ing the grid method for trial structure generation. In our
preliminary investigations, the structures were made to span
the orthogonal space, by alignment of one secondary structural
element on a particular axis as a reference and the next
secondary element on the other Cartesian axes or their bisec-
tor. About 26 orientations are possible for the second helix in
relation to the first helix without invoking symmetry. The
algorithm generates different possible conformations by posi-
tioning the secondary elements in 3D space starting with the
first and adding each secondary element in the reference frame
of the previous one step-by-step. Total number of structures
generated with this method is (26)(n�1), where n is the number
of helices. Considering that the secondary structural elements
can occur with a reversal of polarity in the known proteins, a
total of 52(n�1) structures are generated. It was found with this
method of trial structure generation that a large strain was
introduced in the loop regions during the placement of sec-
ondary structural elements along the Cartesian axis. In a helix-
turn-helix protein (1FLX), out of 52 structures generated with
this method, 17 structures had an RMSD o10 Å, with the
lowest RMSD at 4.2 Å. We explored a second option of
utilizing the dihedral space for trial structure generation in
which the main chain dihedrals (F and C) were incremented
from 0 to 3601 in steps of 901 each. Thus, the conformations
generated corresponded to 0, 90, 180 and 2701 for each
dihedral selected for rotation. We selected two amino acids
from each loop region, adding upto four rotatable dihedrals
per loop. A total of (256)(n�1) structures were generated with

Table 1 (a) Average values for Ramachandran angles (F,C) for the helix, sheet and loop region obtained from a database analysis of B1000

globular proteins. (b) The most probable values for Ramachandran angles (F,C) for the loop region obtained from a database analysis of

B1000 globular proteins (listed in order of preponderance for each dihedral)

(a) (b)

Helix Sheet Loop

F (Phi) C (Psi) F (Phi) C (Psi) F (Phi) C (Psi)

Amino

acid

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD F (Phi) C (Psi)

ALA �63.6 7.8 �39.3 9.3 �121.3 33.6 132.9 45.3 �77.1 41.6 62.1 86.0 �60, �140, 0, 60 140, �20
ARG �64.4 9.7 �39.5 10.2 �116.7 28.7 129.7 39.1 �83.5 47.9 63.5 82.6 �60, �120, 60, 0 160, �20
ASN �66.6 14.2 �36.0 13.4 �107.0 37.7 115.6 60.3 �69.1 67.9 52.3 77.0 �80, 60, 0 20, 40, 120, �180
ASP �64.8 9.9 �38.6 11.7 �105.9 35.6 107.4 69.3 �79.2 50.6 47.6 84.0 �80, 60, 0 20, 120, �20, 160, �180
CYS �66.9 12.9 �39.2 10.8 �119.4 27.3 128.4 54.8 �88.5 50.4 66.3 87.4 �60, �120, 60, 0 140, 0, �180
GLN �65.3 9.3 �38.9 9.4 �114.6 29.2 127.6 41.0 �79.9 50.3 60.7 81.0 �60, 60, 0 160, 0, �180
GLU �64.8 9.1 �39.2 9.1 �113.8 30.7 127.3 42.1 �78.2 44.0 53.3 83.9 �60, 60, 0 140, �20
GLY �60.9 20.9 �40.2 21.6 �44.4 127.6 36.0 149.2 33.6 88.5 0.3 101.4 100, �60, 0 20, �180, 180
HIS �67.5 15.0 �38.3 14.4 �118.5 30.9 129.0 44.0 �83.8 56.5 66.1 80.0 �60, �120, 60, 0 160, 60, 0, �180
ILE �65.1 9.2 �42.1 8.4 �114.5 19.0 123.8 34.4 �93.5 31.1 79.5 76.4 �100, �60, 0 140, �40
LEU �65.3 9.3 �39.2 10.3 �108.8 22.8 124.0 38.8 �84.0 35.5 69.0 81.8 �60, 0 160, �20
LYS �64.7 10.5 �39.4 10.0 �113.0 29.0 128.4 41.4 �78.7 49.3 57.3 83.1 �60, 60, 0 160, �20, 60, �180
MET �65.6 8.9 �38.4 10.7 �119.0 25.8 131.1 38.0 �85.9 41.8 67.4 82.4 �60, 0, �120 160, �10, 80
PHE �66.0 12.6 �40.5 13.0 �119.5 25.8 133.4 36.5 �91.2 44.4 74.4 78.9 �60, �120, 70, 0 160, 0, �20, 80
PRO �58.0 6.4 �36.4 11.2 �70.7 10.4 133.2 39.2 �65.2 12.4 83.3 84.8 �60, 0 160, �20, 60, �180
SER �65.8 12.2 �36.5 13.8 �122.5 29.4 128.9 64.4 �86.4 46.4 67.4 91.5 �60, �120, 0, 60 160, 0, �180
THR �67.4 13.7 �39.3 12.8 �118.3 22.8 123.7 66.3 �96.1 35.3 68.0 92.5 �80, �120, 0 180, 140, 0, �180
TRP �64.7 12.6 �40.1 12.1 �118.0 27.6 129.4 50.4 �87.5 42.1 66.7 81.1 �60, �120, 60 160, 0, 80, �180
TYR �65.9 14.2 �40.3 13.4 �121.0 25.8 136.7 30.4 �89.0 47.5 71.8 80.3 �60, �120, 60, 0 160, 0, 80, �180
VAL �65.5 9.8 �41.7 9.8 �116.9 19.3 125.2 37.8 �95.6 33.0 82.5 79.6 �120, �60, 0 140, �30, �180
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this protocol, where n is the number of secondary structural
elements. For the helix-turn-helix case, out of 256 structures
generated, 83 had an RMSDo10 Å, with the lowest RMSD at
3.47 Å. The third protocol which we attempted takes recourse
to the commonly observed and energetically preferred dihe-
drals in conformational analyses viz. gauche(þ), gauche(�) and
trans. Eclipsed conformation is also considered as a possibility.
The middle two amino acids from each loop are selected and
their (F,C) dihedrals (four dihedrals per loop) are varied. Rest
of the dihedrals of each loop region remain untouched during
this structure generation process. Here also, a total of
(256)(n�1) structures are generated for each system. For the
helix-turn-helix case, out of the 256 structures generated, 96
had an RMSDo10 Å, with the lowest RMSD at 3.41 Å. From
the number of structures generated and the RMSDs computed,
it is evident that sampling in the dihedral space is comparatively
more expensive, but more reasonable in terms of the quality of
the structures generated. According to Go and Scheraga at least
six degrees of freedom are required for the complete loop
closure.151 We have considered only four degrees of freedom
by varying four dihedrals in the loop region, during trial
structure generation for sampling the three dimensional space,
but include the remaining unutilized loop dihedrals to complete

the sampling via a Metropolis Monte Carlo (Boltzmann) in
subsequent stages of structure refinement. This was done to
ensure that the proposed methodology samples, at least in a
coarse-grained manner, nearly all loop conformations.

(4) Biophysical filters

The trial structures generated are screened using biophysical
filters, which have been developed on the basis of known
physico-chemical properties of proteins. The first such prop-
erty is named as persistence length, which is the maximum
length of the uninterrupted polypeptide chain persisting in a
particular direction. In literature, persistence length is defined
as the distance over which the direction of the polymer segment
persists and has been used extensively to describe the rigidity of
synthetic polymers as well as DNA.152,153 The algorithm for
persistence length calculates the distance between the N-term-
inal of the ith residue (i ¼ 1, 2, . . ., n � 1; n is the residue
number), and the C-terminal of (i þ j)th residue (j ¼ 1, 2. . .)
consecutively, as long as the distance is greater than the
previous one. The above process is repeated starting from the
(i þ 1)th secondary structural element and the distance calcu-
lated is compared with the distance obtained from the previous

Table 2 (a) The most probable values for the side chain dihedrals in the helix region obtained from a database analysis ofB1000 globular proteins

(listed in order of preponderance for each dihedral). (b) The most probable values for the side chain dihedrals in the loop regions obtained from a

database analysis of B1000 globular proteins (listed in order of preponderance for each dihedral)

(a)

Amino acid w1 (Chi1) w2 (Chi2) w3 (Chi3)

ARG �60, �180, 180, �40, �80, 80 180, �180, �60 �180, 180, �60, 80
ASN �60, �180, �80, �40, 180, 80, 60 �40, 40, 120, �180
ASP �60, �180, �80, 180, �40, 60, 80 0, 180, �180
CYS �60, �40, �180, 180, 80, 60, �80
GLN �60, �180, �40, �80, 180, 80, 60 �180, 180, �60, 80 �40, 60, 20, 140, �180
GLU �60, �180, 180, �40, �80, 80, 60 �180, 180, �60, 80 0, 60, �60, 180, �180
HIS �60, �180, 180, �40, �80, 80, 60 �60, 90, 180, �180
ILE �60, �40, �180, 80, 60, �80 �140, 160
LEU �60, 180, �180, �40, �80 180, �180, 60
LYS �60, �180, 180, �40, �80, 80, 60 �180, 180, �60, 60 180, �180, 60, �60
MET �60, �180, 180, �40, �80, 80 �180, 180, �60, 60 �80, 100, 160, �160, 0
PHE �60, 180, �180, �80, �60, 80 60, �60
PRO �20, 40, 0, 20 �40, 40
SER 80, �60, 60, 180, �40, �180, 100
THR 180, �180, �40, �60, 80, 60
TRP �60, �180, 180, �80, �40, 80, 60 100, �100, 0
TYR �60, 180, �180, �40, �80, 80, 60 �60, 60
VAL 180, �180, �60, �40, 80

(b)

Amino acid w1 (Chi1) w2 (Chi2) w3 (Chi3)

ARG �60, �40, �180, 80, 0 180, �180, �60 �180, 180, �60, 80
ASN �60, �180, �40, 80, 0, 180 �40, 40, 120, �180
ASP �60, �180, 80, 60, �40, 180, 0 0, 180, �180
CYS �60, �40, �180, 80, 180, 0
GLN �60, �40, �180, 0, 80, 180 �180, 180, �60, 80 �40, 60, 20, 140, �180
GLU �60, �40, �180, 180, 0, 80 �180, 180, �60, 80 0, 60, �60, 180, �180
HIS �60, �40, �180, 80, 60, 0, 180 �60, 90, 180, �180
ILE �60, �40, 80, 60, �180, 0 �140, 160
LEU �60, �40, �180, 180, 0 180, �180, 60
LYS �60, �40, �180, 0, 180, 80 �180, 180, �60, 60 180, �180, 60, �60
MET �60, �40, �180, 180, 80, 0 �180, 180, �60, 60 �80, 100, 160, �160, 0
PHE �60, �40, �180, 180, 0, 60, 80 60, �60
PRO 40, �20, 0, 20, �40, 40
SER 80, �60, 180, �40, �180, 0
THR 80, 60, �40, �60, 0, �180
TRP �60, �40, �180, 80, 60, 180, 0 100, �100, 0
TYR �60, �40, �180, 180, 80, 60, 0 �60, 60
VAL 180, �180, �60, �40, 0, 80
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calculation. This is continued till maximum distance of the
polypeptide chain is obtained which is the persistence length
for that protein in any given direction. Analysis of dataset of
B1000 globular proteins showed that the persistence length
varies from 15 Å to 60 Å within the 95% confidence limits and
averages around 40 Å (Fig. 2).

Another filter developed is the radius of gyration, which
describes the overall spread of the molecule and is defined as
the root mean square distance of the collection of atoms from
their common center of gravity. Radius of gyration, used to
describe polypeptide chains, was originally proposed 60 years
ago by German chemist Kuhn,154 where he emphasized that
the shape of the random walk polymer is not spherically
symmetric but is flexible having an isotropic end-to-end vector
distribution. Flory155 proposed that the growth of mean square
end to end distance of the polymer is a function of the degree of
polymerization. For an N amino acid long protein behaving as
a random coil, radius of gyration, RG, is directly proportional
to the square root of N, suggesting that with the sequence
information alone, for a given polymer, one can approximately
predict the size. According to Flory, for large values of N,
which is generally the case with proteins, a self avoiding
random walk model rather than a simple random walk model
is more appropriate. This is attributable to excluded volume
effects156 and results in a different scaling: RG is directly
proportional to N3/5. The algorithm for radius of gyration first
calculates the center of gravity of the whole protein molecule
and then the root mean square distance of all the atoms from
the center of gravity. Radius of gyration was calculated for
the selected dataset of proteins and the values were plotted in
Fig. 3 against N3/5, where N is the number of amino acids. The
R2 value for the correlation is 0.86. Using least square fit
method upper and lower limits for this filter were set up.

The third filter developed is based on hydrophobicity157

which is now well documented to be a major governing force
in the folding of proteins. Proteins fold in a way, such that,
the hydrophobic amino acids occupy the core region and the
hydrophilic amino acids are relatively more exposed on the
surface. Various hydrophobicity scales have been defined158,159

which are based on the tendency of amino acids to be found
inside the protein core or on the surface and on the basis of
physico-chemical properties of side chains of amino
acids.160,161 We have first calculated the accessible surface
areas162 of side chains from the fully extended tripeptides
(GLY–X–GLY). These values are in good agreement with
the literature values.163 The accessible surface area of amino
acid residues changes upon folding of the polypeptide chain
and is related to the hydrophobicity of the amino acid side
chain, which governs the preference of the amino acid for the
surface or the core of the protein. After considering several
alternatives to convert hydrophobicity into a computational
filter, we have decided on quantifying the ‘‘non-polar in and
polar out’’ property as a ratio. The hydrophobicity ratio, FH is
defined here as the ratio of loss in accessible surface area (ASA)
per atom of non-polar atoms to the loss in accessible surface
area (ASA) per atom of the polar atoms,

FH ¼
Loss in ASA per atom of non-polar atoms

Loss in ASA per atom of polar atoms
ð1Þ

For B1000 protein dataset, the ratio FH was calculated and a
graph between the hydrophobicity ratio and frequency was
plotted (Fig. 4). The hydrophobicity ratio varies from 1.0 to 1.9
in conformity with expectations. We have selected the range
from 1.2 to 1.6, which lies within the 95% confidence limits as a
filter.
Proteins are closely packed structures. The formation of

secondary and tertiary structures drives them towards achiev-
ing high packing densities.164,165 Studies in this area indicate
correlation between packing density, sequence conservation,
and folding nucleation.166 Folded proteins are known to
exhibit packing fractions around 0.7.167 We have devised a
grid method to compute the packing fractions and generated a
distribution for the selected dataset of B1000 proteins men-
tioned above. The values for packing fraction average around
0.70 and lies between 0.6 and 0.8 within 95% confidence limits
(Fig. 5).
Essentially the aforementioned biophysical filters are de-

signed to restrict the sample space of trial structures and to
limit the number of candidates for further energy based
processing in search of the native.

(5) Clash removal

Structures selected by the biophysical filters may have close van
der Waals contacts due to overlaps of some parts of the

Fig. 2 Persistence length analysis on the dataset of B1000 globular
proteins.

Fig. 3 Radius of gyration analysis on the dataset of B1000 globular
proteins.

Fig. 4 Hydrophobicity ratio (FH, eqn. (1)) analysis on the dataset
of B1000 globular proteins.
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secondary structural elements or side chains during trial struc-
ture generation. For this, a distance based Monte Carlo
sampling of the loop dihedrals is carried out. This is achieved
by small optimizations of the main chain dihedrals in the loop
regions and side chain dihedrals of the helix as well as loop
regions during which small perturbations (2–101) are made to
ensure that the overall topology of the trial structure is not
disturbed but the number of clashes is minimized.

(6) Energy minimization

At this stage, the trial structures are free from severe van der
Waals contacts but local optimization of the side chains is
required. A short minimization139 of 150 steps (50 steepest
descents þ 100 conjugate gradients) in vacuum with distance
dependent dielectric is performed on the trial structures.

(7) Energy ranking

According to the thermodynamic hypothesis, the native state
of the protein corresponds to the global free energy minimum
under normal physiological conditions.3 A good scoring func-
tion, therefore, is the one that mimics a free energy function
and discriminates between the native-like conformations and
innumerable decoy conformations.

An all-atom based empirical scoring function developed in-
house168–171 and tested previously on publicly available decoys
is employed to rank the optimized structures.172 The empirical
scoring function is expressed as a sum of three energy terms—
electrostatic, van der Waals and hydrophobic.

E ¼
P

Eel þ Evdw þ Ehpb (2)

Here, Eel is the electrostatic contribution to the energy com-
puted with a sigmoidal dielectric function, Evdw is the van der
Waals term, Ehpb is the hydrophobic contribution captured via
Gurney approach173,174 and the summation in eqn. (2) runs
over all the atoms of the protein. Hydrogen bonding interac-
tions are included in the electrostatics term as in the second-
generation Amber force field. Based on energy ranking, 100
lowest energy structures were selected.

(8) Metropolis Monte Carlo simulations

The selected 100 lowest energy structures are further optimized
by Metropolis Monte Carlo simulations (10 000 random moves
for each structure at 300 K) in the space of side chain dihedrals
of all the amino acids and main chain dihedrals of the amino
acids in the loops.

(9) Characterization of candidate structures

The 100 candidate structures in each case are then character-
ized for their topological equivalence with the respective native
structures using parameters such as percentage native contacts
and RMSD in Cartesian space. The revised energy ranking of
the structures is also obtained.

3 Calculations and results

We have chosen twelve small a-helical globular proteins, to test
the performance and viability of the protocol outlined in Fig. 1,
for generating native-like structures starting from sequence
and secondary structural information. These proteins are free
from metal ions, disulfide bridges as well as prosthetic groups
and fold autonomously in vitro. The number of amino acids in
these proteins ranges from 36 to 68 and the number of alpha
helices ranges from 3 to 4. A master sheet of the results at the
end of each step outlined in the Methods section is provided
in Table 3.

Trial structure generation

Starting with the amino acid sequence and the secondary
structural information from the native structure and dihedral
angles obtained from the database analysis (Tables 1 and 2),
initial structure containing the coordinates of all the atoms is
built. Trial structures are then generated following sampling in
the F, C space of two residues in each loop, considering
gauche(þ), gauche(�) and trans as well as eclipsed conforma-
tions for each dihedral. For each of the helical proteins, the
number of trial structures generated is equal to 256(n�1), where
n is the number of alpha helices. This is shown in Table 3,
column (iv). Proteins with very short loops (o2 AAs) or very
long loops (46 AAs) and loops with proline require special
treatment. This is taken up in the Discussion section.

Filtering the trial structures

The trial structures are passed through persistence length and
radius of gyration filters to reduce the sample size of trial
structures (Table 3, columns (v) and (vi)). We observe that the
usage of persistence length filter followed by radius of gyration
gives the maximum efficiency. In the case of small proteins
where persistence length filter fails to reject any structure, a
combination of the filters is efficient in screening trial struc-
tures. At this stage, the lowest RMSDs obtained with the end
loops are in the range of 3.29–6.64 Å and without the end loops
are in the range of 2.63–4.42 Å. These are given in columns (vii)
and (viii), respectively of Table 3.

Clash removal and energy minimization

Generation of trial structures results in several close van der
Waals contacts. A Monte Carlo procedure is used to remove
the clashes. Close contacts occur among the main chain atoms,
main chain and side chain atoms and among the side chain
atoms. Small perturbations in the main chain dihedrals of the
loop region and side chain dihedrals of the helix as well as loop
regions, of the atoms involved in contact are attempted, until
the structure is free from severe close contacts. Short energy
minimization is performed thereafter on these structures with
the protocol described in the Methodology section. The main
purpose of these two steps is to relax the structure by removing
any strain that may occur due to intramolecular clashes. The
lowest RMSD ranges from 2.35 to 4.32 Å for all the twelve
systems after this preliminary structure optimization and these
are reported together with the corresponding energy rank in
columns (ix) and (x) of Table 3.

Fig. 5 Packing fraction analysis on the dataset of B1000 globular
proteins.
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Energy scans using empirical scoring function

Energy analysis of these structures is carried out with the
scoring function described in the Methodology section. The
native structure was found to be the most stable energetically
with this scoring function in all the systems. We selected 100
lowest energy structures for each system after energy analysis.
The lowest RMSD together with the corresponding energy
rank obtained amongst these 100 structures at this stage is
given in Table 3 in columns (xi) and (xii). The selected 100
lowest energy structures have among them a few structures
with native-like topology and RMSDs from the native in the
range of 2.85 to 4.88 Å in all the twelve systems studied.

Monte Carlo optimization

The selected 100 structures are further optimized with a multi-
ple move Metropolis Monte Carlo (Boltzmann) simulation in
the dihedral space using the empirical scoring function. As the
initial structures are generated by a change in only four
dihedrals of the loop region, during the Metropolis Monte
Carlo simulation we allow all the main chain dihedrals in the

loops to vary, as also the side chain dihedrals to instigate better
packing. In all the systems studied, even though we do not find
a large variation in the RMSD of the structures after Monte
Carlo optimization, we observe that the energies of the struc-
tures improve (columns (xiii) and (xiv) in Table 3). The super-
imposed lowest RMSD structures with their respective native
structures are shown in Fig. 6.

Characterization of the selected structures

An assessment of the generated structures with RMSD in
Cartesian space was carried out with respect to the native at
each step of the pathway (Table 3, columns (vii), (viii), (ix), (xi),
(xiii) and Table 4, column (ii)). In addition, percentage native
contacts and RMSD in dihedral space were also calculated for
the candidate structures after Metropolis Monte Carlo opti-
mization as reported in Table 4, columns (iii) and (iv), respec-
tively. Results in Table 4 indicate that side chain optimization
has to be addressed in further studies towards the native.
Thus, starting from sequence and secondary structural in-

formation of the protein molecule, the methodology is able to

Fig. 6 The lowest RMSD structure emerging from the proposed pathway superimposed on the corresponding native structure for each of the
twelve test proteins: (a) 1VII; (b) 1DV0; (c) 1GVD; (d) 1MBH; (e) 1GAB; (f) 1IDY; (g) 1PRV; (h) 1HDD; (i) 1BDC; (j) 1HP8; (k) 1BW6; (l) 2EZH.
Native is represented in a darker shade and the predicted native-like structure in a lighter shade.
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generate an ensemble of structures by sampling the dihedral
space around the loop regions. The biophysical filters reduce
the sample size. After energy optimization, the scoring function
selects 100 candidates with a few structures bracketing native
to within 3–5 Å for each of the protein sequences investigated.
The protocol is not a simulation of the folding pathway but an
integrated computational suite to generate native-like decoys
for small alpha helical globular proteins.

4 Discussion

We present here a computational protocol for bracketing
native-like structures from sequence and secondary structural
information and illustrate the methodology on twelve small
alpha helical globular proteins. Native-like structures are seen
to be bracketed to within 3–5 Å of the native in the 100 lowest
energy structures in each case without exception. A critical

assessment of each step is presented below. Sampling the
dihedral space in a near complete manner to generate trial
structures is not new but has become conceivable recently due
to improved storage capacity and speed of current day com-
puters. Biophysical filters utilizing the known physico-chemical
properties of proteins have shown to reduce the number of
candidates to a manageable number. When Persistence length
is correlated with diameter of proteins for the dataset of
proteins, the correlation is not high (R2 ¼ 0.45). On the other
hand, when radius of gyration is correlated with the diameter
of proteins, the correlation is good (R2 ¼ 0.95). Radius of
gyration, therefore, is an indirect measure of the approximate
radius of the protein. These two filters, which are based on
different biophysical properties of protein, are nearly indepen-
dent of each other and their usage as two different filters
appears justified. The filters designed are in a sense comple-
mentary in eliminating wrong candidates which are either too
extended or too compact. Due to the in-built characteristics of
persistence length filter, it is able to reject extended structures
very effectively. Radius of gyration on the other hand has
proven to be more efficient in setting tight lower bounds as
clear from Fig. 3. The empirical energy function utilized has
been shown earlier172 to separate the native from the decoys in
a large number of decoy sets. Here the function is able to
bracket native-like structures in the hundred lowest energy
structures. The present protocol considers all atom representa-
tion of the protein molecule, from the structure generation step
itself, unlike the reduced representations175 and lattice mod-
els.176 The results present a proof of concept of the protocol. It
may also be mentioned that each of the steps is amenable to
automation in an integrated pathway for native-like tertiary
structure prediction at least for small alpha helical globular
proteins.
We have further undertaken a comparison of the present

methodology with homology modeling using four popular
public domain softwares viz CPH models,177 ESyPred3D,178

Swiss-model179 and 3D-PSSM.180 CPH server builds the

Table 5 A performance appraisal of different modeling softwares for protein structure prediction (based on RMSD)

No Protein

PDB ID

CPH models177

RMSD (Å)

ESyPred3D178

RMSD (Å)

Swiss-model179

RMSD (Å)

3D-PSSM180

RMSD (Å)

Present workb

RMSD (Å)

1 1IDY (1–54)a 3.96 (2–54)a 3.79 (2–51)a 5.73 (1–51)a 3.66 (1–51)a 3.36

2 1PRV (1–56)a 5.66 (2–56)a 5.56 (3–56)a 6.67 (3–56)a 5.94 (1–56)a 3.87

a Numbers in parenthesis represent the length (number of amino acids) of the protein model. b Structure with lowest RMSD bracketed in the 100

lowest energy structures.

Table 4 Characterization of the predicted native-like structures from

the pathway for each of the twelve proteins

No. PDB ID (i) Lowest RMSD

after Metropolis

Monte Carlo

simulations (Å) (ii)

Native

contacts

(%) (iii)

Dihedral

RMSD

(1) (iv)

1 1VII 2.88 46.81 55.17

2 1DV0 4.74 26.56 75.58

3 1GVD 4.89 30.61 59.51

4 1MBH 4.63 36.84 49.47

5 1GAB 4.08 42.35 63.03

6 1IDY 3.36 48.10 51.63

7 1PRV 3.87 46.75 60.92

8 1HDD 4.27 56.38 37.02

9 1BDC 4.21 41.76 56.78

10 1HP8 4.20 38.10 61.60

11 1BW6 4.69 38.30 59.24

12 2EZH 4.40 49.52 44.35

Table 6 CPU time required for each step of the pathway for two representative proteins

Protein Step

(in Fig. 1)

Stage Time required

for single

structure (s)

Total

structures

Time required for

all the structures

per processor (s)

Total time

required on

50 processors

1GVDa Step (3) þ Step (4) Trial structure generation

and application of filters

B0.48 25 980 B12 600

Step (5) Removal of clashes B78.37 25 980 B2036 052 B40 721 s (B11 h)

Step (6) Minimization B5.87 25 980 B152 502 B3050 s (B51 min)

Step (7) Energy calculation B0.1 25 980 B2598 B52 s (B1 min)

Step (8) Metropolis MC B4067 100 B406 700 B8134 s (B2.3 h)

2EZHb Step (3) þ Step (4) Trial structure generation

and application of filters

B0.346 249 740 B86 400

Step (5) Removal of clashes B124.78 249 740 B31 162 557 B623 251 s (B7 days)

Step (6) Minimization B7.46 249 740 B1 863 060 B37 261 s (B10 h)

Step (7) Energy calculation B1 249 740 B249 740 B4995 s (B1.4 h)

Step (8) Metropolis MC B10 228 100 B1 022 800 B20 456 s (B5.7 h)

a Contains 3 helices and 52 residues. b Contains 4 helices and 65 residues.
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models according to non-redundant and PDB databases and
3D-PSSM provides a 3D model according to the fold library.
On the other hand both EsyPred3D and Swiss-model provide
the option for template selection for generation of homology
models. Sequence alignments for all of the twelve systems were
performed using the PHI BLAST from NCBI (http://
www.ncbi.nlm.nih.gov/) and all the templates having more
than 30% sequence similarity were selected leaving out native
and sequence homologs belonging to the same family. The
selected templates were used to generate the 3D model of the
protein using SWISS-MODEL and ESyPred3D. We found the
present methodology to result in comparable accuracies, if not
better, for two out of twelve proteins than the homology
models (Table 5). In these two proteins (PDB codes 1IDY
and 1PRV) tertiary structural models were built according to
templates having maximum sequence similarity of 38% and
48%, respectively. For the rest of the proteins, because of the
presence of closely related structures in the database, homo-
logy models lie within an RMSD of less than 1 Å of the native
structure. This study provides an example where ab initio
techniques can provide candidates for native-like structure,
when comparative modeling techniques fail due to database
inadequacies. In our calculations, almost at every stage (except
for trial structure generation and application of filters), the
calculations are performed on 50 UltraSparc III 900 MHz
processors. CPU times required for each step, as shown in
Fig. 1, are presented in Table 6, for two proteins namely 1GVD
and 2EZH, having 3 and 4 helices, respectively. Jobs are data
parallel and hence the ease and advantage of implementing the
pathway on large clusters towards a resolution of the problem
in realistic time scales. However, there is scope for further
speed up.

The length of intervening loops (i.e. loops flanked by the
secondary structural elements) was found to affect the quality
of the tertiary structures predicted. A suggestion for improve-
ment in systems with smaller or larger loops is the generation
of more conformations per dihedral of the loop or at least six
dihedrals per loop instead of the present four or the selection of
residues other than the middle two for trial structure genera-
tion. We have used the last strategy by selecting residues other
than the middle two for trial structure generation for one
protein (2EZH, Table 3). For this case an RMSD of less than
5 Å from the native structure was obtained. When proline
residue occurs in loop, all four conformations are not possible
in view of the restrictions on phi dihedral. This fact is evident in
the case of protein 1BW6 (Table 3) which has proline in one of
the loops. Occurrence of proline in fact presents an opportu-
nity to restrict the sample size. In all cases irrespective of the
length of the loops, the protocol yields structures to within 5 Å
RMSD of the native.

The proposed methodology has shown to bracket reliable
structures for all alpha helical proteins, given the second
generation force field parameters for amino-acids, secondary
structural information and large rotamer libraries. It may be
important to classify proteins into different structural classes
for better predictions as indicated in literature.181,182 Further
improvements to the methodology besides improvements to
scoring function include introduction of a new filter based on
loop dihedrals which can further reduce the size of probable
candidates to less than 100. It is also anticipated that more
efficient Monte Carlo strategies or explicit solvent molecular
dynamics simulations on the selected structures can aid in
optimizing side chain orientations and facilitate favorable
packing interactions. Hydrophobicity and packing fraction
filters could be utilized at this stage for selecting some repre-
sentatives for the native and thus help in reducing the number
of candidate structures further. Post facto free energy analyses
of MD trajectories, on the candidates to narrow down the
choice of the native-like structures are contemplated as the last
step. Work on these lines is in progress.

5 Conclusions

The proposed computational pathway arrives at the tertiary
fold of proteins starting from the secondary structure, for small
alpha helical globular proteins comprising less than 100 amino
acids. Studies on twelve proteins consisting of three to four
helices demonstrated that structure to within 3–5 Å of the
native are bracketed in 100 lowest energy structures in all cases
without exception.
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