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Abstract 

The discovery of new pharmaceuticals via computer modeling is one of the key 

challenges in modern medicine. The advent of global networks of genomic, proteomic and 

metabolomic endeavors is ushering in an increasing number of novel and clinically important 

targets for screening. Computational methods are anticipated to play a pivotal role in exploiting 

the structural and functional information to understand specific molecular recognition events of 

the target macromolecule with candidate hits leading ultimately to the design of improved leads 

for the target. In this review, we sketch a system independent, comprehensive physicochemical 

pathway for lead molecule design focusing on the emerging in silico trends and techniques. We 

survey strategies for the generation of candidate molecules, docking them with the target and 

ranking them based on binding affinities. We present a molecular level treatment for 

distinguishing affinity from specificity of a ligand for a given target. We also discuss the 

significant aspects of drug absorption, distribution, metabolism, excretion and toxicity 

(ADMET) and highlight improved protocols required for higher quality and throughput of in 

silico methods employed at early stages of discovery. We present a realization of the various 

stages in the pathway proposed with select examples from the literature and from our own 

research to demonstrate the way in which an iterative process of computer design and validation 

can aid in developing potent leads. The review thus summarizes recent advances and presents a 

viewpoint on improvements envisioned in the years to come for automated computer aided lead 

molecule discovery. 

 

Keywords: Computational drug discovery, In silico drug design, Binding affinity, Binding 

specificity, ADMET 
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From Drug Target to Leads - 

Sketching A Physicochemical Pathway for Lead Molecule Design In Silico 

1. Introduction 

Drug discovery and development is a cost and time intensive process involving many 

considerations in molecular design, synthesis, testing and evaluation of drug effects ranging 

from local interactions at the molecular/cellular level to global effects on the organism and 

population. Only 20% of drug discovery projects are reported to lead to a clinical candidate and 

only 10% of the compounds that enter clinical development achieve registration. An analysis of 

the reasons for this apparently low success reveals that poor pharmacokinetics, toxicity and lack 

of efficacy are the major factors responsible for failures [1]. Issues like target specificity and 

affinity, drug delivery, toxicity, side effects etc. must be dealt with in parallel for improving the 

success rates. It is now well documented that the number of years to bring out a drug from 

conception to market is approximately 8-10 years, costing on an average US $1.2 billion to $1.4 

billion and above per drug [2]. The involvement of genomics [3], proteomics [4], bioinformatics 

[5] and efficient technologies like, combinatorial chemistry [6], high throughput screening 

(HTS) [7], virtual screening [7], in vitro, in silico ADMET screening [8], de novo and structure-

based [9] drug design serves to expedite as well as economize the modern day drug discovery 

process. 

Structure based computational drug design methods mainly focus on the design of 

molecules for a target site with known three dimensional structure followed by a determination 

of their affinity for the target, based on which a set of hits are obtained [10-12]. The process of 

structure-based drug design is an iterative one and often proceeds through multiple cycles 

before an optimized lead goes into clinical trials [13,14]. High throughput screening is the 

physical screening of large libraries of chemical compounds against a biological target and is 

still the dominant technique in drug discovery. Virtual screening forms an alternative approach 
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and uses computer-based methods to screen large chemical libraries targeted towards a 

biological receptor [15,16] and this task is facilitated significantly by the advent of high 

performance computing environments, data management software and internet to offer the 

advantage of delivering new drug candidates more quickly and at lower costs [17-19].  

The major roles of computation in drug discovery [20] are; (1) virtual screening and de 

novo design [9,21], (2) evaluation of drug-likeness [22-24] and (3) advanced methods for 

determining protein-ligand binding [25]. This review summarizes the current computational 

strategies for rational drug design based on atomic models to generate candidate molecules, to 

identify good binders/inhibitors for the target with high affinity and specificity and attempts to 

sketch a pathway for what is conceivable beyond binding to arrive at a lead molecule based on a 

molecular/structural view of target-drug interactions in a cellular milieu. The plausible steps 

involved in a molecular level design and development of drug molecules with desired affinity 

and ADMET profiles are also discussed. In contrast to this, QSAR related computational 

strategies, which tend to be case specific have been more successful in the prediction of drug 

efficacy, its metabolism and possible toxic effects [26,27]. QSAR strategies take a more 

systemic view by building empirical cause to effect relationships - the atomic perspective 

remains inherent and hidden. In this review, we focus on the development of physicochemical 

atomic models for lead molecule generation.  

We consider the in silico drug discovery process as comprising mainly three stages (Fig. 

1). Stage I includes identification of a therapeutic drug target and building a heterogeneous 

small molecule library to be tested against it. This is followed by the development of a virtual 

screening protocol initialized by either docking of the small molecules from the library or 

building these structures in the active site employing de novo design methods. The next step is 

binding affinity prediction / scoring and optimization of the set of molecules until the desired 

binding affinity is achieved. Following this, molecular simulations can be performed in a select 
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few cases to obtain a more realistic appreciation of binding affinity and its dependence on 

solvent, salt and dynamics. This way, a set of molecules with desired affinity are selected as 

better binders to the target and termed as 'hits'. In Stage II, these selected hits are checked for 

specificity by docking at binding sites of other known drug targets. The hits that score best for 

only the target of interest and poorly for all other targets are selected as specific binding 

molecules. In Stage III, these selected hits are subjected to detailed in silico ADMET profiling 

studies and those molecules that pass these studies are termed as 'leads'. 

 

 

 

 

 

  

 

 

 

 

Figure 1. A flowchart outlining a plausible generalized structure-based in silico drug discovery strategy.                  

2. In silico identification of hits as better binders: Stage - I 

Creating molecules with suitable drug-like properties for a specific target has been a 

cherished goal of medicinal chemists. Principles of molecular recognition have not advanced 

much beyond the conventional steric and electrostatic complementarities and hydrophobicity - 

the relative weightings often beating intuition - thus thwarting automated design of novel 

inhibitors and therapeutic agents based on a reliable set of rules, even when the three 

dimensional structure of the drug target is known. The alternative is an energy-based approach, 
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which conceals the principles but captures the overall thermodynamics of binding nevertheless 

[28]. Computational structure-based design, spurred by rapid advances in biomolecular target 

structure determination and computational resources as well as reliable atomic level energy 

functions, is now gaining ground as a means of generating new pharmaceuticals [29-32]. A 

computational strategy for identification of hits on the basis of binding affinities is illustrated in 

Fig. 2 and described in this section. 

 

Assessment of Suitability of Candidate Based on 
Lipinski’s Rule of Five and Solubility Criteria 

Molecular Mechanics and Empirical Scoring 
 

Geometry  Optimization,  
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Figure 2. A computational strategy and considerations for obtaining lead-like molecules in silico (Stage I) 

2.1. Target discovery/selection: Three-dimensional structures of drug targets  

Pharmaceutical agents generally exert their therapeutic effect by binding to and 

regulating the activity of a particular protein or nucleic acid called the drug target. Knowledge 
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of target characteristics, such as protein / nucleic acid sequence features, structural properties, 

proteomic profiles, pathway affiliation and roles, and tissue-distribution patterns, is useful for a 

molecular dissection of the mechanism of action of drugs and for predicting features to guide 

target discovery and drug design [33,34]. Target discovery/selection is a decision which focuses 

on finding an agent with a particular biological action that is anticipated to have therapeutic 

utility and is influenced by a complex balance of scientific, medical and strategic considerations 

[35,36]. Two crucial questions are answered in deciding whether to accept or reject a new 

research target. Firstly, what is the probable risk and the likely financial return of the target? 

Secondly, will the project provide the industry with the right drug, for the right market niche, at 

the right time and the right place? [37-39]. 

Current drug therapy rests on about 218 targets which are classified into eight 

biochemical classes consisting of enzymes, receptors, nuclear receptors, nucleic acids (DNA, 

RNA and ribosomes), ion channels, antibody targets, transporters and unknown/miscellaneous 

targets (Fig. 3). There are approximately 6000 drugs currently on the market for these drug 

targets. Three-dimensional structures for only 130 of these targets are available [40-43]. 
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Figure 3: The eight therapeutic drug target classes [40]. The dark bar indicates the total number of known targets 
for that class. The light bar indicates the number of 3D structures available in PDB for that class. (Source: 
DrugBank database [41] and Protein Data Bank [42]) 
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After the drug targets are identified partly by computational tools and mostly by 

experimentation and thorough validation, obtaining the three dimensional structure of the target 

and identification of the drug binding sites are necessary for proceeding with the computational 

design of inhibitors/activators for the target. Conventionally, this is achieved through 

experimental means such as X-Ray or NMR methods [44,45]. It is also possible to adopt the 

rapidly evolving computational routes such as bioinformatics tools or ab initio structure 

prediction methods [46-49]. In this context, computational strategies for a reliable structure 

prediction of DNA, RNA and proteins - particularly the membrane bound proteins - are highly 

relevant and in demand. 

 

2.2. Small molecule generation  

Lead-like molecules serve as a starting point to demonstrate the desired biological 

activity on a validated molecular target. 

2.2.1. Current strategies 

a. Manual/ Fragment-based Approach: Candidate molecules may be generated manually using 

simple drawing/building tools available in commercial/ free software or in an automated 

manner via in silico combinatorial methods involving fragments or templates derived from 

databases. This technique forms the basis of de novo design [50-54]. 

b. Small molecule libraries: Candidate molecules may be retrieved from databases of small 

molecules for further screening. Target based virtual screening strategies require such small 

molecule libraries which are utilized in docking [55,56]. 

A number of small molecule/ drug databases [57-59] have become available for culling 

structures serially or randomly or through a query system for testing their binding affinity with 

the target. An ideal small molecular database for this purpose should contain molecules with 

properties that are uniformly distributed over the ranges considered as appropriate for drugs, to 
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ensure sufficient sampling of lead-like molecules for any target. Also, if the aim is sampling of 

all molecules in the database, then in order to keep the process expeditious, the number of 

molecules in the database should be restricted.  

2.2.2 Development of a non-redundant small molecule database. A lead-like molecule database 

should reflect diversity in chemical and structural properties and contains one or more 

molecules with suitable affinity to any target and appropriate bioavailability facilitating further 

chemical elaboration. Working towards this goal, we are developing a non-redundant database 

of small molecules (NRDBSM) giving special consideration to physicochemical properties and 

Lipinski's rule of five [60], which determine the solubility, permeability and transport 

characteristics across membranes. Some of these are molecular weight, number of hydrogen 

bond donors and acceptors, log P and molar refractivity [61]. The NRDBSM database is aimed 

specifically at high throughput screening of candidates and their further optimization into 

successful lead-like molecules hence fixed limits for selected properties have been employed as 

filters to assemble the database. These precincts have been chosen based on the ranges within 

which most small molecule databases hold a high percentage of lead-like molecules [62-64]. 

NRDBSM currently holds close to 17000 molecules with simple structures, low molecular 

weight, less number of rings and rotatable bonds, low hydrophobicity such that after screening, 

optimization and consequent increase in molecular complexity, they would show a drift towards 

'drug-like' property space [24]. The database is prepared deliberately to avoid biases of normal 

distribution of these properties. Fig. 4 illustrates the distribution / frequency plots of some 

properties of interest for absorption and distribution of these small molecules comprising the 

database. The distribution plots uniformly span partition coefficient logP in -1.0 to 6.0 range, 

molar refractivity from 40 to 130, molecular weight from 150 to 480, number of hydrogen bond 

donors from 0 to 3 and hydrogen bond acceptors from 2 to 9. The NRDBSM besides facilitating 
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focused searches in larger databases once a hit is identified should also help in finding a small 

number of hits for further optimization [65]. 
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Figure 4. Distribution of molecules according to physicochemical properties in the non-redundant database of small 
molecules (NRDBSM accessible at: website: www.scfbio-iitd.res.in/drugdesign/software/nrdbsm/) 

To filter out probable candidates, apart from strategies like restricted exploration of 

isomeric structures, selection based on similarity to bioactive compounds [65], one may also 

introduce a pre-processor embedding active-site information in terms of functional groups 

required and desired distances between the substituents on potential candidates, volume and 

shape of the candidates etc. essentially imposing the condition that the candidate be a 

complementary negative image of the active site. The predominant consideration in most lead-

design protocols is activity or ingrained active-site information such that the molecules 

generated bind well in the active site. Ease of synthesis is also a crucial issue and the intuition 
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of an organic chemist has to be converted into a computational filter in the in silico 

combinatorial approach. 

 

2.3. Preparation of target and small molecule for energy based processing  

Once the set of candidate molecules satisfying the required criteria is obtained, the target 

and all the candidates are prepared for further computational analysis, energy and force 

calculations in particular. Current generation molecular mechanical (force field based) methods 

are extensively validated on biomolecular systems having the advantage over ab initio or semi-

empirical quantum mechanical methods in being expeditious, and are preferred for modeling 

and simulation of biomolecular complexes [66,67]. Many force fields are now available for 

biomolecules, containing pre-calculated partial atomic charges and parameters for proteins and 

nucleic acids, obviating the need for parameterization for these [68,69]. AMBER [70,71], 

CHARMM [72], GROMOS [73], OPLS [74] are some of the currently popular force fields 

developed for simulating biological macromolecules like proteins, nucleic-acids, lipids, 

carbohydrates and protein-ligand systems. For small molecules, however, rules of transferability 

are less reliable thus necessitating a derivation of partial atomic charges and geometries using 

rigorous quantum mechanical methods or fast approximate methods employing semi-empirical 

calculations, followed by a biomolecular force field compatible parameter assignment 

appropriate for small molecules [75]. Given the huge dimensionality of chemical space, 

generating a limited set of appropriate parameters for a wide range of compounds is not a trivial 

problem. Several force fields like MMFF [76, CVFF [77], CHARMm [78], CFF [79], 

COMPASS [80], MM2/MM3/MM4 series [81], UFF [82], GAFF [83] among others, have been 

designed to reproduce internal geometries, vibrations and conformational energies of small 

molecules. Force fields for metal ions have also been designed [84]. Combination of GAFF 

with AMBER is one prescription which offers a useful molecular mechanics tool for rational 
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drug design and other areas where protein-ligand or DNA-ligand simulations are employed. The 

virtual molecules and the target thus prepared proceed to the next step. 

2.4. Docking 

The most common computer aided drug design strategy is molecular docking and 

scoring [85,86]. Docking involves positioning ligands optimally within the target binding site 

and scoring them for potential activity. Molecular docking is often used in virtual screening 

methods, whereby large virtual libraries of compounds are reduced in size to a manageable 

subset, which if successful, includes molecules with high binding affinity to the target receptor 

[87,88]. Theoretical prediction of the correct placement of ligands at the binding site is a major 

challenge and is typically attempted using various docking protocols employing search 

algorithms such as Monte Carlo, genetic algorithms, molecular dynamics, fragment based 

approach, point complementarity, distance geometry, tabu searches, systematic searches and 

multiple methods [86,89]. For the target under study, an appropriate docking strategy must be 

chosen based on its efficiency in cases where the (i) structure of a reference complex is already 

known, (ii) the active site is known but the structure of a reference complex is not known, (iii) 

the structure of the target is known but no information on the active site and finally, (iv) the 

structure of the target is also not known but a pharmacophore model could be built based on 

known bioactive compounds for the target and/or sequence similarity with other proteins whose 

structures are known. Protein flexibility is fundamental to understanding the ways in which 

drugs exert biological effects, their binding site location, binding orientation, binding kinetics, 

metabolism and transport [90-94]. Some of the most popular rigid and flexible docking 

approaches are; Prodock [95], ICM [96], MCDOCK [97], DockVision [98], QXP [99], 

AutoDock [100,101], GOLD [102], DIVALI [103], DOCK [104], FlexX [105], LUDI [106], 

SLIDE [107], FTDOCK [108] among others which have been proposed for structure-based drug 
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design. The concepts, applications, success and limitations of various docking protocols have 

been reviewed by many authors in great detail [109-110].  

 

2.5. Binding affinity prediction / Scoring  

A physicochemically rigorous and rapid computational method for binding affinity 

prediction or scoring will have widespread application in structure-based drug design, virtual 

screening and de novo design protocols. In spite of several recent developments in this area, 

accurate prediction of binding affinities using computational methods based on an atomic level 

description of the energetic components of binding, thus transferable across a wide range of 

targets, has proved to be a major challenge [111]. Computational approaches which utilize the 

receptor structure information for estimating binding affinities can be pooled into five major 

classes with respect to their methodological background [25,112,113] - (A) Molecular 

simulation based approaches, (B) Empirical / force field / additivity based approaches, (C) 

Knowledge based approaches, (D) Quantum mechanics based approaches and (E) Hybrid 

approaches. 

2.5.1. Binding affinity calculations via scoring functions. The success of docking molecules into 

a target site and designing lead-like molecules ultimately depends on the accuracy of the 

scoring function in capturing the correct configuration in the docked structure and in ranking 

accurately the compounds based on estimates of their relative binding affinities. Some 

requirements for a good scoring function are: accuracy in structure and affinity prediction, 

efficiency in virtual screening and speed. Scoring functions are classified into three categories: 

knowledge based, force field based and empirical [114, 115]. Force field based scoring 

functions typically account for non-bonded interactions viz. van der Waals (Lennard Jones) and 

electrostatic (Coulombic) interactions [78, 101, 116-118]. Empirical scoring functions employ a 

set of terms contributing to the binding energy, which are computed and trained against 
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experimental data to determine their relative weights. The resulting equation with parameterized 

terms is verified on a test set and then applied to the systems under study [119-127]. Many 

terms have been employed by different empirical functions, such as hydrogen bonding, 

hydrophobic contacts, rotor terms, desolvation etc.. Knowledge based methods are developed 

via statistical analyses of a large database of protein-ligand structures, where the frequency of 

occurrence of properties such as interatomic contacts, pairwise potentials etc. are determined 

across the data set and adopted for scoring [114, 128-132]. The major advantage of such scoring 

functions is that they are computationally swift. Empirical and knowledge based methods, 

however, do not guarantee extensions to other classes of molecules that differ from the data set 

on which the function is parameterized/trained. Comparative evaluations of different docking 

programs in combination with various scoring functions for their applications in virtual 

screening have been carried out [133-136] and results show that many of the popular scoring 

functions are able to select correctly docked from misdocked structures, but correlation with 

experimental binding affinities still remains a major limiting factor in computational drug 

discovery [137]. 

Once a candidate ligand is designed and docked, its interaction/binding energy with the 

target (protein/nucleic acid) is calculated and compared with that for other proposed compounds 

and existing ligands, thus allowing assignment of a 'score' to the molecule and facilitating 

automated selection of ligands with desired binding affinity (Fig. 5).   
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Figure 5. Current accuracies with atomic level energy based scoring functions - Correlation between predicted 
binding energies and experimentally determined standard free energies of binding (A) Data computed for 251 
protein-ligand complexes comprising 60 unique targets using the BAPPL server (available at http://www.scfbio-
iitd.res.in/software/drugdesign/bappl.jsp) (B) Data computed for 39 DNA-ligand complexes comprising 6 unique 
base sequences using the PreDDICTA server (available at http://www.scfbio-iitd.res.in/ preddicta). 

2.5.2. Free energy based methods. The Molecular Mechanics-Generalized Born-Solvent 

Accessibility (MMGBSA) [138,139], Molecular Mechanics-Poisson Boltzmann-Solvent 

Accessibility (MMPBSA) [140-142] and the Linear Interaction Energy (LIE) [143] are 

methods, which elicit binding free energies from structural information and may be used as an 

alternative to the computationally more intensive free energy simulations. The 

MMGBSA/MMPBSA approaches are parameterized within the additivity approximation 

wherein the net free energy change is treated as a sum of a comprehensive set of individual 

energy components, each with a physical basis and estimated in a force field compatible 

manner.  In the MMGBSA method, molecular mechanical terms are adopted to account for the 

direct van der Waals and electrostatics (between the target and the candidate molecule), the 

Generalized Born model for solvation electrostatics and the solvent accessibility for solvation 

van der Waals and hydrophobic contribution [144-146]. The MMPBSA method differs from 

this only in the calculation of solvation electrostatics contributions, which are determined as 

solutions to the Poisson-Boltzmann equation [147]. Extra terms for entropic contributions are 

often incorporated in these calculations. Both these methods when applied to energy minimized 

structures have been shown to be computationally rapid and fairly reliable for assessing the 

contribution of various components to the binding free energy, limited only by the semi-

quantitative nature of the results obtained. The LIE [148,149] method calculates the binding 

affinity as a sum of two parameterized terms that reflect the binding phenomenon. The 

parameters are obtained from experimental data and multiplied with ensemble averaged energy 

terms obtained from simulations. The MMGBSA and MMPBSA methods have been effectively 

applied on both, single structures as well as ensembles obtained from simulations (a preferred 

choice), allowing the flexibility of choosing speed over accuracy or vice versa. Free energy 
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simulations [150,151] may be employed in cases where accuracy and theoretical rigor are of 

utmost importance and computational expense a minor issue. Here, techniques like free energy 

perturbation, thermodynamic integration etc. are often employed for binding affinity 

determination. All these methodologies are amenable to further systematic improvements.  

 

2.6. Study of the dynamics of promising target - candidate molecule complexes  

 Target-candidate molecule complexes with high binding affinity can be further 

processed in a dynamic environment employing simulation strategies such as molecular 

dynamics. Though computationally expensive, such simulation strategies provide a route to 

investigating the effects of conformational flexibility, solvent and salt, and entropic factors. 

Simulations with explicit solvent are highly time consuming and the time scales may limit 

probing conformational changes induced by inhibitors or allosteric changes known to occur 

with activators [152-156]. Crossing conformational barriers higher than thermal energies need 

special treatment such as simulated annealing which have also become standard protocols 

[157,158]. Recently, flexible Monte Carlo simulations applied to DNA-drug systems have 

shown considerable promise in this regard [159]. 

 

3. In silico processing of identified hits as specific binders: Stage - II 

Apart from the requisite binding affinity, a key consideration during drug design is 

specificity [9-12]. Therapeutic strategies generally require inhibitors that are highly selective for 

a particular target. However, the molecular features driving selectivity in vivo remain only little 

understood.  

Computational tools have been and are continuing to be developed to extract molecular 

parameters from the large body of ligand binding data responsible for affinity discrimination 

toward structurally related proteins [160,161]. Traversing on the thermodynamic path, drugs 
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with low specificity could potentially bind to a large number of targets, which could result in 

high toxicity. Also, very small amounts of the drug become available to bind to the target, thus 

requiring higher dosage further increasing the risk of toxic side effects.  

A computational strategy for addressing the issue of specificity would be to assess the 

binding of the candidate molecule with all potential targets in the human cell - not an 

impossible task in the emerging low cost, high performance computing scenario with reliable 

scoring functions, improved annotations and mounting structural data. This could be achieved 

by building a database of possible binding sites for all potential targets and docking the 

candidate molecules to all these targets followed by binding affinity estimates. High affinity 

binding to non-target sites translates to low target specificity of the candidate thus indicating 

potential side effects. Unsuitable candidates could be filtered out on this basis while the 

remainder further optimized for improved affinity and specificity.  

Computational methods have come of age to generate binding affinity columns of a 

candidate to diverse targets and diverse candidates to the same target. An illustrative example is 

shown in Fig. 6 where a two-dimensional specificity matrix generated in silico for 14 drugs and 

their corresponding targets representing all currently known classes (Fig. 3) of therapeutic drug 

targets. Each column in the figure represents binding affinity of a drug to all the 14 targets. 

Each row represents the affinities of the 14 drugs to a target. If the drugs are specific to the 

targets, high affinities should occur only along the diagonal and all the off diagonal cells should 

ideally represent nonspecific (weak) binding. However, if the drugs are not highly target 

specific, the off-diagonal elements could represent strong binding, which could be used as an 

indicator for improving drug specificity as well as predicting possible toxicity and side effects. 

This matrix was generated based on the docking and binding affinity calculation for protein-

ligand and DNA-ligand interactions using an in-house software (http://www.scfbio-

iitd.res.in/software/drugdesign/bappl.jsp and http://www.scfbio-iitd.res.in/preddicta). It may be 
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discerned from Fig. 6 that six out of the 14 drugs studied (Drug3, Drug5, Drug6, Drug8, 

Drug10, Drug11, Drug12) are specific to their corresponding targets (i.e. they do not bind to 

any other target with a higher affinity – this is indicated by the absence of gray cells in the drug 

column). The other drugs bind strongly to some non-targets too and could possibly have side 

effects. Once such indications are obtained from computational analyses, further investigations 

on toxicity/side-effects can be made and the drug design/delivery process can be modified to 

ensure higher specificity. The caveat, however, is that such predictions are strongly dependent 

on the accuracy/efficiency of the docking and binding affinity prediction methods employed. 

The matrix nonetheless portends the methodological developments to ensue in computer aided 

drug design. 

  Drug1 Drug2 Drug3 Drug4 Drug5 Drug6 Drug7 Drug8 Drug9 Drug10 Drug11 Drug12 Drug13 Drug14
Target1 -5.15 -3.53 -3.59 -3.78 -3.55 -3.63 -3.63 -5.14 -2.86 -1.86 -4.38 -4.4 -5.91 -5.49 
Target2 -2.41 -6.67 -2.94 -2.77 -4.87 -2.62 -3.54 -3.42 -2.26 -1.72 -3.13 -4.06 -4.37 -5.02 
Target3 -7.09 -6.99 -9.8 -6.93 -7.78 -7.01 -6.84 -8.65 -5.67 -3.65 -7.22 -8.54 -8.65 -9.02 
Target4 -3.52 -5.06 -4.01 -6.75 -5.15 -4.29 -5.17 -6.44 -4.54 -3.26 -2.66 -5.06 -3.77 -6.37 
Target5 -8.21 -7.71 -6.51 -7.45 -9.63 -8.07 -7.9 -7.11 -7.26 -7.14 -7.49 -8.06 -9.59 -8.64 
Target6 -6.24 -6.69 -5.97 -7.17 -6.03 -9.73 -6.78 -8.26 -6.42 -3.76 -7.46 -8.44 -7.97 -9.12 
Target7 -2.53 -3.5 -3.23 -2.84 -5.99 -3.74 -6.78 -3.63 -2.73 -3.49 -2.19 -5.13 -1.55 -4.67 
Target8 -5.03 -4.51 -7.03 -4.99 -7.32 -5.83 -6.13 -8.99 -4.87 -4.1 -5.09 -7.82 -4.59 -8.2 
Target9 -1.12 -1.03 -1.41 -1.4 -1.68 -1.64 -1.33 -1.95 -2.16 -0.4 -1.86 -1.34 -1.47 -2.32 

Target10 -8.06 -7.42 -6.79 -7.07 -7.03 -7.53 -7.31 -6.93 -6.63 -9.38 -7.65 -7.8 -8.79 -8.37 
Target11 -6.26 -6.35 -7.74 -6.79 -6.88 -6.31 -6.81 -8.61 -5.18 -3.72 -8.83 -8.06 -9.69 -9.44 
Target12 -5.84 -5.92 -6.74 -6.48 -7.09 -6.05 -6.67 -8.05 -5.93 -5.44 -5.77 -10.35 -7.94 -8.81 
Target13 -4.56 -3.91 -4.52 -3.77 -2.36 -3.85 -3.95 -5.41 -2.01 -1.57 -5.43 -4.93 -13.12 -5.52 
Target14 -3.46 -2.61 -4.38 -3.67 -4.59 -4.89 -4.58 -4.45 -3.38 -2.6 -4.9 -3.5 -7.38 -8.88 

 
DIAGONAL ELEMENTS (Black): Drug-Target Affinity     OFF-DIAGONAL ELEMENTS (Gray, White): Drug-Non Target Affinity 
 
Figure 6: Specificity Matrix for drugs and their targets/non-targets. Drug 1 corresponds to Target 1, Drug 2 
corresponds to Target 2 and so on. Grey cells represent drug binding to non-targets with higher affinity than the 
original drug-target interaction, thus indicating low specificity. White cells show low affinity. 
Target 1 is lymphocyte function-associated antigen LFA-1 (CD11A) (1CQP; Immune system adhesion receptor) 
and Drug 1 is lovastatin.Target 2 is Human Coagulation Factor (1CVW; Hormones & Factors) and Drug 2 is 5-
dimethyl amino 1-naphthalene sulfonic acid (dansyl acid). Target 3 is retinol-binding protein (1FEL; Transport 
protein) and Drug 3 is n-(4-hydroxyphenyl)all-trans retinamide (fenretinide). Target 4 is human cardiac troponin C 
(1LXF; metal binding protein) and Drug 4 is 1-isobutoxy-2-pyrrolidino-3[n-benzylanilino] propane (Bepridil). 
Target 5 is DNA {1PRP; d(CGCGAATTCGCG)} and Drug 5 is propamidine. Target 6 is progesterone receptor 
(1SR7; Nuclear receptor) and Drug 6 is mometasone furoate. Target 7 is platelet receptor for fibrinogen (Integrin 
Alpha-11B) (1TY5; Receptor) and Drug 7 is n-(butylsulfonyl)-o-[4-(4-piperidinyl)butyl]-l-tyrosine (Tirofiban). 
Target 8 is human phosphodiesterase 4B (1XMU; Enzyme) and Drug 8 is 3-(cyclopropylmethoxy)-n-(3,5-
dichloropyridin-4-yl)-4-(difluoromethoxy)benzamide (Roflumilast). Target 9 is Potassium Channel (2BOB; Ion 
Channel) and Drug 9 is tetrabutylammonium. Target 10 is {2DBE; d(CGCGAATTCGCG)} and Drug 10 is 
Diminazene aceturate (Berenil). Target 11 is Cyclooxygenase-2 enzyme (4COX; Enzymes) and Drug 11 is 
indomethacin. Target 12 is Estrogen Receptor (3ERT; Nuclear Receptors) and Drug 12 is 4-hydroxytamoxifen. 
Target 13 is ADP/ATP Translocase-1 (1OKC; Transport protein) and Drug 13 is carboxyatractyloside. Target 14 is 
Glutamate Receptor-2 (2CMO; Ion channel) and Drug 14 is 2-({[(3e)-5-{4-[(dimethylamino)(dihydroxy)-
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lambda~4~-sulfanyl]phenyl}-8-methyl-2-oxo-6,7,8,9-tetrahydro-1H-pyrrolo[3,2-H]isoquinolin-3(2H)-
ylidene]amino}oxy)-4-hydroxybutanoic acid. 

A candidate molecule could be scanned against the entire genome / proteome in the cell 

if the sequence specific DNA conformation and the three dimensional structures of all proteins 

in the target cell are established. Even pharmacophore models can be of help in pressing 

docking-scoring strategy into service to ensure selectivity for the target. The number of proteins 

expressed in a particular cell is reported to be around 10000-20000 although the human genome 

can code for many more proteins. Thus, efforts need to be routed to ensure specificity for target 

vis-à-vis these cell specific proteins. However, the spatial and temporal issues of gene 

regulation/ genome expression in cells are only poorly or partly understood. 

 

4. Beyond binding affinities - Towards a molecular treatment of ADMET profiles of 

candidates: Stage - III 

The success of a drug journey through the body is measured in the dimensions of 

absorption, distribution, metabolism and excretion (ADME) properties (Fig. 7). An ideal oral 

drug should be rapidly and completely absorbed from the alimentary canal and find its way 

directly and specifically to its site of action. It should not bind to, or interact with related 

receptors and or bind specifically to passing serum proteins. There should also be no risk that 

breakdown of this ideal compound gives rise to any toxic metabolites and the compound should 

have an appropriate half-life, passing gradually through the kidneys without harming them. 

Leads discovered using virtual screening and de novo design methodologies need to be 

optimized to produce candidates with improved bioavailability and low toxicity [162]. Lead 

molecules are ligands that typically exhibit suboptimal target binding affinity. Studies have 

shown that there exists a difference between leads and drugs [63], which can be expressed as 

follows: Leads exhibit, on average, less molecular complexity (less molecular weight, less 

number of rings and rotatable bonds), are less hydrophobic (lower ClogP and LogD74) and 
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have lower polarizability (less calculated molar refractivity, CMR). Leads should display the 

following properties to be considered for further development in the drug discovery process or 

to be called as "drug-like" [63]: (1) relatively simple chemical features, amenable for 

combinatorial and medicinal chemistry optimization efforts; (2) membership to a well 

established SAR (structure-activity relationship) series, wherein compounds with similar 

structures exhibit similar target binding affinity; (3) favorable patent situation; and (4) good 

ADME properties. The ADME characteristics of a drug, together with its pharmacological 

properties are conventionally viewed as part of drug development - the process of making a 

molecule as effective as possible as a medicine [163]. Studies have indicated that poor 

pharmacokinetics and toxicity are the most important causes of high attrition-rates in drug 

development and it has been widely accepted that these areas should be considered as early as 

possible in the drug discovery process, thus improving the efficiency and cost-effectiveness of 

the industry [23,24].  

Human ADMET predictions can be attempted at several levels [164]: (1) In silico or 

computational predictions from QSAR models to project in vitro or in vivo data, (2) Inter-

species, in vivo-in vivo (including allometry) using data from pre-clinical species and (3) In 

vitro-in vivo using data obtained from tissue or recombinant material from human and pre-

clinical species. In silico methods are already being harnessed to predict the probable ADMET 

profiles of any molecule, thus reducing the number of experimental studies required for 

compound selection and improving the success rate [9,165-167]. In silico prediction of drug-

likeness at an early stage involves evaluation of various ADMET properties using 

computational approaches like QSAR or molecular modeling [165,168]. A number of studies 

have been conducted to identify properties that make a drug distinct from other chemicals 

[61,169,170]. Availability of large databases of drug or drug-like molecules, e.g. CMC 

(Comprehensive Medicinal Chemistry), MDDR (MACCS-II Drug Data Report), WDI (World 
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Drug Index) provide useful information about the properties of drugs. The most influential 

study of "Lipinski's rule-of-five" identifies several critical properties that should be considered 

for compounds with oral delivery as concern [171]. A deeper understanding of the relationships 

between important ADME parameters and molecular structure and properties is needed to 

develop better in silico models to predict ADMET properties [9]. Some of the ADME properties 

evaluated using in silico models are; intestinal permeability, aqueous solubility, human 

intestinal absorption, human oral bioavailability, active transport, efflux by P-glycoprotein, 

blood-brain barrier permeation, plasma protein binding, metabolic stability, interactions with 

cytochrome P450s and toxicity.  
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Figure 7. The distribution path of an orally administered drug molecule inside the body is depicted. Black solid 
arrows: Complete path of drug starting from absorption at site of administration to distribution to the various 
compartments in the body, like sites of metabolism, drug action and excretion. Dashed arrows: Path of the drug 
after metabolism. Dash-dot arrows:  Path of drug after eliciting its required action on the target. Dot arrows: Path of 
the drug after being reabsorbed into circulation from the site of excretion. 

4.1. Absorption  

Drug absorption is a property of paramount importance in drug design. Oral absorption, 

A, also termed bioavailability, is typically measured as [172], 
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A= (Do/ Div) x 100 

where Do is the drug distribution after oral administration, Div after intravenous administration. 

For reasons of ease of administration and patient compliance, there is an overwhelming 

preference for drugs to be orally bioavailable. One of the key requirements for oral 

bioavailability is that a compound should be soluble in the gastric fluid and be capable of 

permeating the intestinal epithelium, crossing from the gut into systemic circulation. Absorption 

depends on the solubility and permeability of the compound, as well as interactions with 

transporters and metabolizing enzymes in the gut wall. The considerations at this stage therefore 

are, ensuring solubility (hydrophilicity) and lipophilicity (hydrophobicity) for optimal 

absorption. The hydrophilicity lipophilicity balance (HLB) refers to a subtle balance that the 

drug must possess. It is measured on an empirical scale of 0-20, where an HLB value of 0 

corresponds to a completely hydrophobic molecule and a value of 20 to a molecule made up 

completely of hydrophilic components [173]. Another consideration which has a bearing on 

solubility and transformations is the pKa of the functional group(s) on the drug and their 

ionization state in the stomach / small intestines. Because of the difficulty in obtaining human 

permeability data, the Caco-2 cell monolayer or Madin-Darby canine kidney (MDCK) 

monolayer models are employed as references [174]. Caco-2 or MDCK cell lines are routinely 

used in pharmaceutical industry and form a substitute for measuring actual intestinal 

permeability.  

Considerable efforts have gone into the development of in silico models for the 

prediction of oral absorption [175]. However, predicting oral bioavailability is not an easy task, 

as it depends on the superposition of two processes - absorption and liver first-pass metabolism. 

Simple models are based on descriptors such as log P or log D, or polar surface area, size of the 

molecule, shape and flexibility [176-179]. Different multivariate approaches such as, multiple 

linear regression analysis, partial least squares and artificial neural networks have been used to 
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develop quantitative structure-human-intestinal-absorption relationships [179]. In all 

approaches, hydrogen bonding is considered to be a property with an important effect on oral 

absorption. Lipinski's rule of five arrived at in a retrospective analysis of the marketed drugs has 

been an extremely useful empirical guide in predicting oral bioavailability. Absorption 

simulation programs, such as GastroPlus [180] and Idea [181] have become valuable tools in 

lead optimization and compound selection. They are based on advanced compartmental 

absorption and transit (ACAT) models, in which physicochemical concepts, such as solubility 

and lipophilicity are more readily incorporated. The predictive approaches to 

permeability/absorption prediction have largely been confined to compounds that are 

transported across the intestinal mucosa by predominantly passive absorption mechanisms. 

However, there are classes of drugs like ACE inhibitors and beta-lactam antibiotics that rely on 

active transport systems to convey them from gut to the bloodstream [182].   

 

4.2. Distribution  

After absorption, drug enters the blood circulation and binds to blood plasma proteins 

nonspecifically and is distributed to various tissues and organs in the body. The volume of 

distribution is defined as [172,183], 

Vd (in litres) =  Dbody / Dplasma 

where Dbody is the amount of drug in body (mg), Dplasma is plasma concentration of drug (mg/L) 

The extent of the distribution depends on structural and physicochemical properties of 

the compound. The primary goal of the drug however, is to reach and bind to its molecular 

target for which it is tailor-made. If the affinity of the drug is high for the target then the drug 

molecule will preferentially reach the target site obeying law of mass action and as the drug 

leaves after eliciting its response, more drug molecules reach the site with blood plasma 

proteins acting as reservoir. High affinity to the target and optimal binding strength for plasma 
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proteins is required to ensure nonspecific binding with affinities comparable to solvent or less. 

The volume of distribution, together with the clearance rate, determines the half-life of a drug 

and therefore its dose regimen and so an early prediction of both the properties would be of 

considerable benefit. The log-log plot of unbound volume of distribution, Vd against 

distribution D at pH 7.4 (with the data corrected for plasma-protein binding), reveals a clear 

linear trend, with log Vd increasing at higher lipophilicities [184]. This can be used as a simple 

guide in modifying and optimizing the Vd. It is important to estimate the fraction of drug bound 

to plasma proteins, because only the unbound drug can cross the membranes and bind to the 

intended molecular target. In addition to plasma proteins like albumin, glycoproteins and 

lipoproteins, drug can bind to a variety of particles in the blood, including red blood cells, 

leukocytes, platelets and globulins.  

In silico approaches to predict plasma protein binding have been critically reviewed by 

several authors [185,186]. Recently, chromatographic retention data has been used to generate a 

predictive QSPR comprising various E-state and molecular connectivity indices [187]. Using 

the multiple computer-automated structure evaluation (M-CASE) program and protein affinity 

data for 154 drugs, models were generated that correctly predicted the percentage of drug bound 

in plasma for ~ 80% of the test compounds with an average error of ~ 14% [188]. For a drug to 

exert a therapeutic effect at a central nervous system (CNS) target, it must be able to cross from 

the systemic circulation into the CNS. There are two interfaces at which this may occur: the 

blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier. In the case of CNS-targeted 

drugs, signs of good BBB permeation will be sought; conversely, for systemically targeted 

drugs, minimal BBB permeation will help reduce the likelihood of CNS side effects. For this 

reason, there has been a great interest in the computational prediction of BBB permeation as 

indicated by recent reviews [189,190]. The computational models developed for BBB 

permeation can be grouped into three classes. First, there are simple "rules of thumb" that have 
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been derived by examining the molecular properties of compounds that do and do not cross the 

BBB [191-195]. Second are classification models that typically predict whether or not a 

compound is a BBB permeator [196-198]. The final class comprises models predicting 

continuous values of BBB permeation based on either logBB or logPS data [199].  

 

4.3. Metabolism  

A major concern in drug design is the possible in vivo metabolic transformations and 

ensuring that the small molecules (hits) designed remain intact. The drug molecule through 

blood may also reach besides the target, the sites of biotransformations, usually liver, where the 

drug metabolizing enzymes (DME) present (Table 1) convert it into metabolites. Several 

aspects of metabolism are relevant to drug discovery, including the rate and extent of 

metabolism, the enzymes involved and the products formed, each of which can give rise to 

different concerns. The extent and rate of metabolism affect clearance, whereas the involvement 

of particular enzymes might lead to issues related to the polymorphic nature of some of these 

enzymes and to drug-drug interactions.  

In silico approaches to predicting metabolism can be divided into QSAR and three-

dimensional QSAR studies [200], protein and pharmacophore models [201,202] and predictive 

databases. Computational techniques for the prediction of possible metabolites through structure 

based [203] or rule based methods [204], and the compilation of xenobiotic metabolite 

databases [204] are a significant development in computer aided drug design.  

  There has been much interest, in the prediction of interactions of organic compounds 

with individual cytochrome P450 (CYP450) enzymes, which constitute the major drug 

metabolizing enzyme system in the human body. Two broad approaches have been adopted to 

model these interactions: those using available X-ray structures to create homology models of 

important CYP450s and those that are ligand based, studying known inhibitors/substrates in an 
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attempt to generate pharmacophore or QSAR models [205]. Availability of three-dimensional 

structures of all the enzymes responsible for biotransformations combined with rules of design 

to ensure only nonspecific binding to these enzymes except for the target, is a conceivable 

pathway within the framework of structure based drug design. About 51 enzymes are identified 

as responsible for biotransformations and of these, structures for 33 are available in the PDB 

facilitating a start for an affinity-based elimination of compounds likely to be transformed into 

inactive metabolites (Table 1). Also, a catalogue of enzymic reactions in vivo and substrate 

structures together with preferred cleavage / modification site information could suggest 

guidelines for drug designers in proposing candidate molecules to ensure that preempting 

modifications do not occur. The role of cofactors and coenzymes could pose some hurdles or 

failures in this scheme, which only a better appreciation of metabolomics can help alleviate.   

Metabolomics is gaining increasing interest in drug discovery and disease diagnostics 

and treatment [206]. The concept of global analysis of all metabolites in a sample and the 

analysis of metabolic responses to drugs or diseases was recently introduced. Additional non-

enzymatic modifications can also occur due to pH, coenzymes or other molecules in vivo. 

Conjugation is another possibility. A database of potential breakdown/modification pathways of 

a representative set of small molecules, based on bond strengths, quantum mechanical charge 

distributions and organic reaction mechanisms may facilitate this step in suggesting a few do's 

and don'ts in design.  

Table 1: Drug metabolizing enzymes with their family and availability of 3D structures 

S. No. Drug Metabolizing Enzyme Family Structure in 
PDB 

1 Human Cytidine deaminase Hydrolases Yes 
2 Cholinesterase Hydrolases Yes 
3 ECOLI Beta-lactamase Hydrolases Yes 
4 Human Adenosine deaminase Hydrolases Yes 
5 Human Pancreatic alpha-amylase precursor Hydrolases Yes 
6 Human Arylsulfatase A precursor Hydrolases Yes 
7 Human Liver carboxylesterase 1 precursor Hydrolases Yes 
8 Human Glutamine synthetase Ligases Yes 
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9 Human Cytochrome P450 3A4 Oxidoreductase Yes 
10 Human Cytochrome P450 2D6 Oxidoreductase Yes 
11 Human Cytochrome P450 2C19 Oxidoreductase No 
12 Human Cytochrome P450 2B6 Oxidoreductase No 
13 Human Amine oxidase Oxidoreductase Yes 
14 Human Cytochrome P450 2C9 Oxidoreductase Yes 
15 Cytochrome P450 19 Oxidoreductase No 
16 Aldehyde oxidase and P450 Oxidoreductase Yes 
17 Human Aldehyde oxidase Oxidoreductase Yes 
18 Human Cytochrome P450 1A2 Oxidoreductase No 
19 Cytochrome P450 3A4 Oxidoreductase Yes 
20 Human Cytochrome P450 2C19 Oxidoreductase No 
21 Human Cytochrome P450 2C8 Oxidoreductase Yes 
22 Human Cytochrome P450 CP2D6 Oxidoreductase No 
23 Human Cytochrome P450 CYP2D6 Oxidoreductase No 
24 Human Cytochrome P450 2A6 Oxidoreductase Yes 
25 Human Cytochrome P450 2E1 Oxidoreductase No 
26 Human Cytochrome P450 2A13 Oxidoreductase No 
27 Human Alcohol dehydrogenase 6 Oxidoreductase Yes 
28 Human Cytochrome P450 11A1 Oxidoreductase No 
29 Human Cytochrome P450 24A1 Oxidoreductase No 
30 Human Cytochrome P450 1A1 Oxidoreductase No 
31 Human Cytochrome P450, subfamily IIIA Oxidoreductase No 
32 Human Xanthine dehydrogenase/oxidase Oxidoreductase Yes 
33 Human Cytochrome P450 3A4 Oxidoreductase Yes 
34 Human Cytochrome P450 1A2 Oxidoreductase No 
35 Human Cytochrome P450 11B2 Oxidoreductase No 
36 RAT Cytochrome P450 3A1 Oxidoreductase No 
37 RAT Cytochrome P450 2C11 Oxidoreductase No 
38 Human Carbonyl reductase Oxidoreductase Yes 
39 Human Proline oxidase Oxidoreductase Yes 
40 Human Tryptophan 2,3-dioxygenase Oxidoreductase Yes 
41 Aminoglycoside 2'-N-acetyltransferase Transferases Yes 
42 Kanamycin nucleotidyltransferase Transferases Yes 
43 Aminoglycoside 3'-phosphotransferase Transferases Yes 
44 Human Glutathione S-transferase A1 Transferases Yes 
45 Human Glutathione S-transferase A2 Transferases Yes 
46 COMT ( catecol-O-methyl-transferase) Transferases No 
47 Human Nucleoside diphosphate kinase A Transferases Yes 
48 Human Thymidine phosphorylase Transferases Yes 
49 Human Deoxycytidine kinase Transferases Yes 
50 Human Histamine N-methyltransferase Transferases Yes 
51 UDP Glucosyltransferases Transferases No 
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4.4. Excretion  

Clearance / excretion is an important parameter that defines, together with the volume of 

distribution, the half-life and thus the frequency of dosing of a drug. Clearance, Cl, is related to 

distribution and elimination in the following manner [183],  

Cl (L/hr) = Re / Dplasma 

where Re is the rate of elimination (mg/hr), Dplasma is drug concentration in blood plasma 

(mg/L) 

Re is given by,     Re = ke x  Dbody 

where ke is the elimination rate constant and Dbody is the amount of drug in body (mg).  

Thus,             Cl = (0.693 x Vd ) / t1/2 

where Vd is the volume of distribution defined in section 4.2 and t1/2 is drug half life defined in 

section 4.5.4. 

Excretion of the drug from the body mainly takes place via the liver (hepatic clearance 

or metabolism and biliary excretion) and the kidney (renal excretion). Except highly polar 

substances, most drugs are lipid soluble and are reabsorbed from the kidney back into the 

bloodstream. These compounds undergo metabolism, generating more polar species that may 

avoid renal absorption and be excreted in the urine [207]. The design must incorporate enough 

solubility of the drug and its metabolites to facilitate this process. In a plot of plasma 

concentration against time, the area under the curve relates to dose, bioavailability and 

clearance [9]. Renal clearance in humans may be predictable from rat renal clearance that has 

been corrected for species differences in glomerular filtration rate [208]. Allometric 

relationships for clearance tend to be most successful for compounds undergoing renal 

clearance or high hepatic extraction where clearance approaches liver blood flow [209]. A 

multiple linear regression method combining clearance data from two species and readily 

calculated structural parameters (MW, clogP and number of hydrogen bond acceptors) predicts 
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human clearance much better (q2 = 0.682, RMSE = 0.35) [164]. Excretion related properties 

have not received much attention in drug design so far [185]. Software for the prediction of 

possible metabolites of the candidate molecule and a strategy to ensure HLB of the candidate 

and higher hydrophilicity of the metabolites should help.   

 

4.5. Toxicity   

Enumerating molecular origins of toxicity is a difficult task but one could envisage the 

following factors as contributory and propose a computational route to overcome them (Fig. 8). 

4.5.1. Tight binding to non-targets. A repository of the three dimensional structures of all 

biomolecules inside the target cell can help establish specificity to target vis-à-vis non-targets 

and this, that is, selective binding to target is a necessity. 

4.5.2. Accumulation at wrong sites. This could be due to nonspecific binding. Proper HLB will 

ensure reentry into blood. Both (4.5.1 and 4.5.2) above also apply to metabolites of the drug.  

4.5.3. Tight or irreversible binding to target with multiple functions. Firstly, advances in 

metabolomics should help in identifying a target that does not interfere with different functions. 

Metabolic pathways help in understanding the point of interception by the drug and its 

consequences. The ideal target must have a single function that the drug is attempting to 

interfere with. Irreversible binding to targets exclusive to pathogens is acceptable so also to 

targets on viral DNA/RNA. Exclusive nucleic acid based targets in humans for cancer cells are 

probably difficult to establish without interference with normal cells. Where targets have 

multiple functions, half-life of the drug needs to be fine-tuned. In a nutshell, the computational 

pathways need to address proper affinity, specificity besides HLB and high solubility of the 

metabolites for minimizing toxicity. 

 The existing commercially available in silico tools for predicting potential toxicity 

issues can be roughly classified into two groups. The first group uses expert systems that derive 
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models on the basis of abstracting and codifying knowledge from human experts and scientific 

literature. The second group relies primarily on the generation of descriptors of chemical 

structures and statistical analyses of the relationships between these descriptors and the 

toxicological end-points [9]. A recent review discusses the advances in toxicology software 

[210]. 

 

Scoring to Assess Binding Affinity to Targets Other Than the Desired Ones 
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Figure 8. A methodology to assess the possible toxicity of a lead-like molecule taking off from hits in Figure 2 to 
arrive at a lead molecule. 

4.5.4 Drug retention/residence times. Drug activity and ADME characteristics are related to the 

residence/retention time of the drug [211] i.e. the time period in which the drug remains bound 

at the target site, and hence is a crucial factor to be considered during drug design. Non-

covalent target-drug complex dissociation typically occurs via a unimolecular dissociation 

process characterized by the rate equation (first order) [183], 

[C]= [C]o exp(-kdt) 

where [C] is the concentration of the drug in complexed form at time, t; [C]o is the 

concentration of the drug at t=0, kd is the dissociation rate constant. 

For such a process, the retention time, tR is obtained from the dissociation rate constant as, 
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tR = 1/kd 

and the half life, t1/2 of the drug can be calculated [183] as  

t1/2 = 0.693/kd 

The retention time or half-life are important factors which determine the elimination of 

the drug and hence of significant consideration in toxicity studies. A good binder may not 

necessarily be a good drug if its retention time is too high, which could cause toxic effects. 

Also, targets having multiple functions should only be blocked for optimal times or else 

metabolic pathways other than the targeted pathway may get adversely affected. On the other 

hand, long retention time could be potentially advantageous in terms of duration of 

pharmacological effect and target selectivity [211]. Longer half-lives also result in improved 

drug activity as has been demonstrated in the case of inhibition of viral replication [211]. 

Drug activity and toxicity can be modulated by controlling its retention time, which 

depends on both, the structure and charge of the drug as well as external factors like pH [212] 

and concentration of other solutes [213]. The drug retention time is determined by mainly two 

dynamic factors, the amount of drug distributed and its elimination processes. Thus, longer 

retention time can be achieved by either increasing the volume of distribution or decreasing the 

elimination. The latter is typically easier and may be achieved by means of chemical 

modifications. For increasing the volume of distribution, sustained-release dosage forms and 

coadministration of inhibitors of drug-metabolizing enzymes can be employed [173]. 

Computational methods for the prediction of retention times or dissociation rate 

constants can be extremely useful in the design of drugs with optimal retention times. 

Simulation based methods for the prediction of dissociation rate constants [214] may be 

employed but are highly compute-intensive. QSAR based approaches designed for the study of 

interaction kinetics may also be adopted for this purpose [215]. An alternative to these can be 
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the development of an empirical relation based on experimental data for swift prediction of 

dissociation rate constants. 

Keeping such an empirical approach in mind, we carried out a preliminary analysis of 

experimental data on equilibrium dissociation constants and half-lives derived from 

experimental dissociation rate constants, and observed a high correlation between the two (Fig. 

9). The data set includes DNA [216] as well as protein targets consisting of different enzymes 

[217-220], receptors [221] and other proteins [220, 222]. 
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Figure 9. Correlation between drug retention half-life (t1/2) and the dissociation constant (KD) shown as a log-log 
plot. 

From the slope of the linear correlation plot above it may be inferred that, a nanomolar 

dissociation constant corresponds to a half-life of above one hour. This however, is only an 

upper limit based on in vitro studies.  

Intuitively, it is expected that strong binders should result in complexes with longer half-

lives. Rates are however related to free energies of activation and not free energies of binding, 

thus only an empirical correlation can be hoped for at this stage. Also, the effects of competitors 

and solvent have to be factored into such an analysis. 

Thus using an extension of the above approach or similar computational techniques, 

binding affinity may be fine-tuned to address the retention time issue at the design stage. 

 



 34

5. Some softwares for drug design or intermediate steps thereof  

A few comprehensive drug design software are listed in Table 2, some of which are in 

public domain. 

Table 2: Some Drug Design Software 

SNo 
Software 

Name 
Company/ 
Institution 

 
Provided Utilities and URL 

 

1 

InsightII, 
Discovery studio 

 
Cerius ADME/ 
Tox Package 

Accelrys 

Molecular modeling and de novo drug design 
http://www.accelrys.com/products/insight/ 

 
Computational models for the prediction of ADME properties 

derived from chemical structures. 
http://www.accelrys.com/products/cerius2/cerius2products/c2ad

me.html 

2 Sybyl Tripos 
Computational informatics software for drug discovery 

http://www.tripos.com/ 

3 
Phase, Glide, 

Liaison, Qikprop  
Maestro etc 

Schrodinger 

Pharmacophore modeling, Ligand –receptor docking, Ligand-
receptor binding free energy prediction, ADME prediction, 

Molecular modeling etc. 
http://www.schrodinger.com/ 

4 Bio-Suite 
Tata 

Consultancy 
Services Ltd 

Genomics, protein modeling and structural analysis, simulation 
and drug Design. 

http://www.atc.tcs.co.in/biosuite/ 

5 Sanjeevini 
Indian Institute 
of Technology, 

New Delhi 

Active site directed drug design 
http://www.scfbio-itd.res.in/research/drugdesign.htm 

 

6. Conclusion and Perspectives 

Given the very high attrition rates in drug discovery besides the cost and time factors, 

the role of computer aided drug design cannot be overemphasized. The key driving forces for 

current day in silico drug design endeavors are the availability of structural information of the 

targets, emergence of reliable energy functions and force field compatible solvation treatments, 

as well as free energy methodologies and accessibility of high-end computing clusters. A 

combination of basic concepts in chemical bonding (generation of candidate molecules from 

templates), quantum mechanics (geometry optimization and charge derivation), classical 

mechanics (molecular mechanics and dynamics), statistical mechanics (configurational / 
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Boltzmann averaging) and thermodynamics (standard free energies of complex formation) 

allows the development of a rigorous protocol for in silico drug design. The overview presented 

here discusses the advances in and the applicability of predictive in silico methods to drug 

design, from candidate molecule generation, evaluation of their target affinity and specificity, 

identification of hits, to predicting their fate in the body through ADME and toxicity studies. 

This review describes the drug design process from a physicochemical perspective as 

comprising three stages (Fig1). The first stage mainly concerns hit identification on the basis of 

candidate generation and target affinity, molecular docking, scoring and binding affinity 

predictions. The next stage involves identification of the target specificity of the candidate 

molecules, for which a computational protocol is proposed (Fig. 6). This protocol can be easily 

extended to all known targets with a series of candidate molecules or known drugs. The final 

stage deals with drug absorption, distribution, metabolism, excretion and toxicity profiles. The 

significance of these studies to drug design and in silico efforts to develop predictive ADMET 

techniques are discussed. Computational prediction of drug retention times or half-lives, which 

are strongly related to and also dictate ADMET profiles, is emphasized and a method proposed. 

If all the steps enumerated in stages I to III (Fig. 1) above could be implemented in silico, a 

drug molecule with desired affinity, high specificity and low toxicity can be discovered. The 

computational protocols (Fig 2) out-lined can be fine-tuned at each stage to improve accuracies. 

The major lacunae are in the structural database of biomolecules in target cells, a catalogue of 

cell specific enzymic reactions in vivo and software/methodology to screen the new molecules 

or their breakdown products for preventing specific binding to wrong sites. Progresses in 

structural genomics / proteomics and metabolomics are expected to facilitate addressing some 

of these issues at a molecular level in the near future. Worldwide efforts on genomics and 

proteomics have given a significant boost to both experimental and computational methods to 
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march towards personalized medicine with minimal side effects. Automated lead design in 

silico seems a realizable dream in the near future.  
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