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Deoxyribonucleic acid, DNA, is a molecule of great biological significance. The total DNA 
content of a cell is termed the ‘Genome’. The ‘Genome’ is unique to an organism, and is 
the information bank governing all life processes of the organism, DNA being the form in 
which this information is stored. Stretches of DNA called ‘genes’ have the extremely 
important function of coding for proteins. The function of the rest of the genome, loosely 
termed as ‘non-gene’ regions, is not very clearly known.  
 

 
Fig.1 The DNA molecule 

 
DNA has two main functions, 

1. Transcription: Information is retrieved from the DNA by ribonucleic acid, RNA, 
and utilized to synthesize proteins in the body. Proteins are involved in all body 
processes and play many roles. e.g. as hormones, enzymes, carriers, structural 
proteins, receptors, regulators etc.  

2. Replication: DNA is responsible for its own regeneration, i.e., DNA self replicates. 
DNA is present in the body in the form of a double helix, where each strand is composed 
of a combination of four nucleotides, adenine (A), thymine (T), guanine (G) and cytosine 
(C). Within a strand these nucleotides are connected via phosphodiester linkages. The 
two strands are held together primarily via Watson Crick hydrogen bonds where A forms 
two hydrogen bonds with T and C forms three hydrogen bonds with G (Figure2). 

 
 

Fig.2 Watson Crick Base pairing, A-T and G-C base pairing 
 
Specific recognition of DNA sequences by proteins/ small molecules is achieved via the 
combination of hydrogen bond acceptor/donor sites available on the major groove or 
minor groove. e.g. the A-T base pair offers a hydrogen bond acceptor, N7, a donor N6, 
and an acceptor, O4 on the major groove side. 
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DNA-Drug Interaction 
Transcription and replication are vital to cell survival and proliferation as well as for 
smooth functioning of all body processes. DNA starts transcribing or replicating only 
when it receives a signal, which is often in the form of a regulatory protein binding to a 
particular region of the DNA. Thus, if the binding specificity and strength of this 
regulatory protein can be mimicked by a small molecule, then DNA function can be 
artificially modulated, inhibited or activated by binding this molecule instead of the 
protein. Thus, this synthetic/natural small molecule can act as a drug when activation or 
inhibition of DNA function is required to cure or control a disease (Table 1).  
 
DNA activation would produce more quantities of the required protein, or could induce 
DNA replication; depending on which site the drug is targeted. DNA inhibition would 
restrict protein synthesis, or replication, and could induce cell death. Though both these 
actions are possible, mostly DNA is targeted in an inhibitory mode, to destroy cells for 
antitumor and antibiotic action. 
 
 
Drugs bind to DNA both covalently as well as non-covalently.  

 
Covalent binding in DNA is irreversible and invariably 
leads to complete inhibition of DNA processes and 
subsequent cell death. Cis-platin (cis-
diamminedichloroplatinum) is a famous covalent binder 
used as an anticancer drug, and makes an 
intra/interstrand cross-link via the chloro groups with the 
nitrogens on the DNA bases. 
 
 
 
 
 

 
Non-covalently bound drugs mostly fall under the following two 
classes: 
1. Minor groove binders- Minor groove binding drugs are usually 
crescent shaped, which complements the shape of the groove and 
facilitates binding by promoting van der Waals interactions. 
Additionally, these drugs can form hydrogen bonds to bases, typically 
to N3 of adenine and O2 of thymine. Most minor groove binding drugs 
bind to A/T rich sequences. This preference in addition to the 
designed propensity for the electronegative pockets of AT sequences 
is probably due to better van der Waals contacts between the ligand 
and groove walls in this region, since A/T regions are narrower than 
G/C groove regions and also because of the steric hindrance in the 
latter, presented by the C2 amino group of the guanine base. However, a few synthetic 
polyamides like lexitropsins and imidazole-pyrrole polyamides have been designed 
which have specificity for G-C and C-G regions in the grooves.  

 
 
 
 



 
 

2. Intercalators- These contain planar heterocyclic groups 
which stack between adjacent DNA base pairs. The complex, 
among other factors, is thought to be stabilized by π-π stacking 
interactions between the drug and DNA bases. Intercalators 
introduce strong structural perturbations in DNA. 

 
 
 
 
 
 
 

Non-covalent binding is reversible and is typically preferred over covalent adduct 
formation keeping the drug metabolism and toxic side effects in mind. However, the high 
binding strength of covalent binders is a major advantage.  
Proteins are large molecules and bind quite strongly to the DNA, with binding constants 
in the nanomolar range. It has been difficult to achieve similar specificity and affinity 
using small non-covalent binders, and remains a major challenge to the design of drugs 
for DNA. 
 
 
Some DNA binders are listed in the following table, 
 
Table 1. Drug, action and mode of binding for some DNA binding drugs.   
 

SNo Drug Action Mode of Binding PDB 
1 Hoechst 33258 Antitumor Minor groove binding 264D 

2 Netropsin Antitumor, Antiviral Minor groove binding 121D 
3 Pentamidine Active against P. carinii Minor groove binding 1D64 
4 Berenil Antitrypanosomal Minor groove binding 1D63 

5 Guanyl bisfuramidine Active against P. carinii Minor groove binding 227D 
6 Netropsin Antitumor, Antiviral Minor groove binding 121D 
7 Distamycin Antitumor, Antiviral Minor groove binding 2DND 
8 SN7167 Antitumor, Antiviral Minor groove binding 328D 
9 SN6999 Active against P. falciparum Minor groove binding 144D 

10 Nogalamycin Antitumor Intercalation 182D 
11 Menogaril Antitumor- Topoisomerase II poison Intercalation 202D 

12 Mithramycin Anticancer antibiotic Minor groove binding 146D 

13 Plicamycin Anticancer antibiotic Minor groove binding 1BP8 
14 Chromomycin A3 Anticancer antibiotic Minor groove binding 1EKH 

15 cis -Platin Anticancer antibiotic Covalent cross-linking 1AU5 

 
 



Forces involved in DNA-drug recognition: 
Understanding the forces involved in the binding of proteins or small molecules to DNA 
is of prime importance due to two major reasons. Firstly, the design of sequence specific 
drugs having requisite affinity for DNA requires a knowledge how the structure of the 
drug is related to the specificity/affinity of binding and what structural modifications could 
result in a drug with desired qualities. Secondly, identifying the forces/energetics 
involved in such processes is fundamental to unraveling the mystery of molecular 
recognition in general and DNA binding in particular. 
 
Some of the forces that are known to contribute to biomolecular recognition and also to 
DNA-drug binding are direct electrostatic interactions, direct van der Waals/packing 
interactions, complex hydration/dehydration contributions composed of hydrophobic 
component, solvation electrostatics, solvation van der Waals, ion effects and entropy 
terms.  

 
DNA-drug binding may be described in the following manner, 
 

 
 
Consider DNA-drug binding in an aqueous environment. DNA is polyanionic in nature 
and the drug molecule is also often charged. The associated counterions lie near the 
charged groups and are also partially solvated. When binding occurs, it results in a 
displacement of solvent from the binding site on both the DNA and drug. Also, since 
there would be partial compensation of charges as the DNA and drug are oppositely 
charged, some counterions would be released into the bulk solvent and are solvated 
fully. Also, the binding process would be associated with some structural 
deformation/adaptation of the DNA as well as the drug molecule in order to 
accommodate each other. All these events are associated with some energetic 
gains/losses, the comprehensive estimation of which is a major challenge. 
 
We are attempting to understand the energetics of DNA-drug interaction by theoretically 
estimating the above contributions employing classical and statistical mechanical 
methods. Developing a theoretical protocol for detailed quantitative analysis of DNA-
ligand binding in solution is a daunting task due to some major challenges. Simulations 
of DNA with solvent and the attendant counterion atmosphere require careful 
consideration to ensure system stability. Also, evolving a computationally efficient 
technique using statistical mechanical principles for quantitative estimates of binding free 
energies in large biomolecular systems is an equally challenging task. Our study is 
aimed at providing such a theoretical protocol for complementing experimental 
techniques and facilitating a minute study of the structure-energy relationships in DNA-
drug complexes.  



Structural and conformational changes in the DNA and drug on binding in solution are 
associated with enthalpic and entropic contributions to the binding free energy, which 
can be theoretically estimated from ensembles of structures generated via simulations. 
The only drawback of this approach is the long time taken for the simulations. 
The other terms, namely, electrostatics, van der Waals, hydrophobic component, 
rotational and translational entropy can be estimated from single structures. 
  
The web tool, PreDDICTA, estimates the components of DNA-drug binding free energy 
which can be calculated from a single structure, and correlates it with experimental 
binding free energy and ∆Tm, thus providing a swift method for evaluation of potential 
lead candidates for researchers pursuing structure based drug design for DNA. 
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