RASPD⁺ web server Manual

RApid Screening with Physicochemical Descriptors + Machine Learning

RASPD originally developed at Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio)¹ IIT Delhi and further development was continued at Heidelberg Institute for Theoretical Studies (HITS)² as RASPD⁺.

RASPD⁺ web server developed at Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio) IIT Delhi and the Standalone version of RASPD⁺ was developed at Heidelberg Institute for Theoretical Studies (HITS).

- 1. Mukherjee, G.; Jayaram, B. A Rapid Identification of Hit Molecules for Target Proteins via Physico-Chemical Descriptors. *Phys. Chem. Chem. Phys.* **2013**, *15* (23), 9107–9116.
- Holderbach, S.; Adam, L.; Jayaram, B.; Wade, R. C.; Mukherjee, G. RASPD+: Fast Protein-Ligand Binding Free Energy Prediction Using Simplified Physicochemical Features. *Mol Biosci.* 2020, 17;7:601065.

 $RASPD^+$ (RApid Screening with Physicochemical Descriptors + Machine Learning) is a computationally fast protocol for identifying lead-like molecules based on predicted binding free energy against a target protein with a 3D structure and a defined ligand binding pocket. The RASPD⁺ web server provides 4 databases against which user can screen their target protein.

The 4 databases are as follows:

Zinc Database: This database contains 10 million small molecules from ZINC15 database.

DrugBank: This database contains small molecules from DrugBank database of Version 5.1.8. The total number of molecules are 8811.

FDA-Approved (**DrugBank**): This database contain only FDA (Food and Drug Administration) approved drugs from DrugBank database of Version 5.1.8. The total number of molecules are 3722.

<u>BIMP</u>: Bio-activity Informatics of Indian Medicinal Plants. It is a database of Indian medicinal plants containing 316 small molecules.

Availability - <u>http://scfbio-iitd.res.in/raspd+/index.php</u>

ne	About	Documentation	Search	h Results	Contact Us	SCFBio		Download St	andalone ver	sion of RASPI	D+ from 🦉 Git
	Virt	ual Screening	•		Customize	ed Datase	t Screening 🔞		Scaf	fold Search	•
					Vir	tual Scr	eening				
	Complex Bro Downloa Selecc Q Zin FD,	x (Protein with A wse or ad Sample file at Database () cc Database A-Approved: Drugi	Active Site Input PD 1a30 Inpu RCSB Bank	a)* DB ID. and it PDB Id. to f DrugBank BIMP (Inc ants)	press Enter etch from : : : iian Medicinal		Select Method Select Meti Select All Extremely Random F Deep Neu k-Nearest Linear Su Epsilon Si Linear Re	for Binding End hod ⑦ / Random Forest -Forest Iral Network : Neighbours pport Vector Reg upport Vector Reg gression	ression gression	tions*	
										* Fields a	are mandator
	Enter E-m	nail Id. (Optional)								Submit	Reset

A help box is provided for each kind of job submission and required inputs. User can click on ⁽²⁾ icon to get detailed information instantly.

PDB Format:

The term PDB stands for Protein Data Bank. One can download a .pdb file from RCSB website (<u>https://www.rcsb.org/</u>) or can generate from homology/ab-inito based tertiary structure protein modeling tool. To submit a job in RASPD⁺, the .pdb file of protein must have one reference ligand or 1 active site identifier. A PDB file may contain multiple ligands, therefore user can select one reference ligand around which the binding energy will be calculated.

Here are shown the initial 3 residues of pdb file of PDBID 3QLM -

ATOM	1	N	ALA	Α	1	-35.373	6.813	-9.732	1.00	22.43
ATOM	2	CA	ALA	Α	1	-34.766	7.787	-10.700	1.00	24.10
ATOM	3	С	ALA	Α	1	-35.532	9.070	-10.512	1.00	24.15
ATOM	4	0	ALA	Α	1	-36.636	9.018	-10.001	1.00	25.04
ATOM	5	CB	ALA	Α	1	-34.934	7.285	-12.141	1.00	22.61
ATOM	6	N	LEU	Α	2	-35.009	10.194	-10.973	1.00	24.98
ATOM	7	CA	LEU	Α	2	-35.705	11.495	-10.850	1.00	26.29
ATOM	8	С	LEU	Α	2	-37.208	11.455	-11.123	1.00	26.82
ATOM	9	0	LEU	Α	2	-38.014	11.838	-10.259	1.00	28.78
ATOM	10	CB	LEU	Α	2	-35.066	12.562	-11.748	1.00	27.18
ATOM	11	CG	LEU	Α	2	-35.650	13.995	-11.731	1.00	28.79
ATOM	12	CD1	LEU	Α	2	-35.677	14.586	-10.354	1.00	28.02
ATOM	13	CD2	LEU	Α	2	-34.797	14.839	-12.620	1.00	28.82
ATOM	14	N	TRP	Α	3	-37.627	11.004	-12.290	1.00	26.26
ATOM	15	CA	TRP	Α	3	-39.056	11.002	-12.517	1.00	26.94
ATOM	16	С	TRP	Α	3	-39.833	10.216	-11.458	1.00	27.20
ATOM	17	0	TRP	Α	3	-40.987	10.529	-11.215	1.00	28.14
ATOM	18	CB	TRP	Α	3	-39.411	10.470	-13.902	1.00	27.00
ATOM	19	CG	TRP	Α	3	-39.275	8.941	-14.066	1.00	27.68
ATOM	20	CD1	TRP	Α	3	-38.147	8.239	-14.452	1.00	25.84
ATOM	21	CD2	TRP	Α	3	-40.324	7.957	-13.900	1.00	26.59
ATOM	22	NE1	TRP	Α	3	-38.445	6.892	-14.520	1.00	26.62
ATOM	23	CE2	TRP	Α	3	-39.760	6.692	-14.195	1.00	24.26
ATOM	24	CE3	TRP	Α	3	-41.687	8.035	-13.543	1.00	28.65
ATOM	25	CZ2	TRP	Α	3	-40.494	5.502	-14.130	1.00	28.40
ATOM	26	CZ3	TRP	Α	3	-42.441	6.827	-13.450	1.00	30.89
ATOM	27	CH2	TRP	Α	3	-41.829	5.575	-13.750	1.00	30.81

The format of reference ligand in protein file is shown below-

ATOM	969	CB	CYS	А	124	-27.628	29.868	0.465	1.00	34.87	С
ATOM	970	SG	CYS	А	124	-29.437	29.878	0.230	1.00	34.44	S
ATOM	971	OXT	CYS	Α	124	-24.973	30.231	1.130	1.00	35.01	0
TER	972		CYS	А	124						
HETATM	975	C1	PLM	А	127	-30.827	17.169	-12.858	0.80	58.38	С
HETATM	976	01	PLM	Α	127	-30.818	15.972	-13.261	0.80	58.32	0
HETATM	977	02	PLM	А	127	-29.833	17.937	-12.733	0.80	57.59	0
HETATM	978	C2	PLM	А	127	-32.185	17.751	-12.493	0.80	57.69	С
HETATM	979	C3	PLM	Α	127	-32.568	17.307	-11.104	0.80	57.42	С
HETATM	980	C4	PLM	Α	127	-33.089	18.513	-10.350	0.80	59.69	С
HETATM	981	C5	PLM	А	127	-32.267	18.750	-9.062	0.80	61.33	С
HETATM	982	C6	PLM	A	127	-32.685	17.756	-7.953	0.80	61.68	С
			T								

Reference ligand

A PDB file having active site info will look like-

ATOM	931	CG	LYS	778	10.475	7.812	66.858	1.00	62.24	С	0
ATOM	932	CD	LYS	778	9.765	6.468	67.039	1.00	62.24	С	0
ATOM	933	CE	LYS	778	9.114	6.299	68.414	1.00	62.24	С	0
ATOM	934	NZ	LYS	778	10.142	6.345	69.477	1.00	62.24	N	0
ATOM	935	С	LYS	778	9.742	11.355	68.249	1.00	62.24	С	0
ATOM	936	0	LYS	778	9.462	11.208	69.470	1.00	62.24	0	0
ATOM	937	OXT	LYS	778	9.394	12.351	67.562	1.00	62.24	0	0
TER											
HETATM	1114	POL	STP	C 1	44.037	49.900	73.020	0.00	0.00	Ve	
			1								

Active site identifier

Job Submission

There are 3 methods in RASPD⁺ methodology-

Method 1: Virtual Screening:

This method estimates the binding affinity of a single protein ligand complex against one of the 4 available databases on the web tool. To submit the job-

- 1. Click on Virtual Screening button (default method).
- 2. Click on Browse button to upload protein and specify reference ligand (or active site identifier).
- 3. Out of 4 databases, select one database against which you want to screen your protein. Default selected database is Zinc database.
- 4. Select machine learning method for binding energy calculation. User can select one method or All methods for Binding Affinity at a time. (Default: All)
- 5. Specify your email id in text box to get a notification after the completion of the job. (optional)
- 6. Now click on submit button to run your job.

Method 2: Customised dataset Screening:

User can screen protein against their own dataset (custom dataset). User can either upload a .txt file or a .sdf file to create customised dataset. A .txt file should contain ligand information in SMILES format one in each line. Text file should not contain more than 1000 SMILES in .txt file and in .sdf file. A sample text file for SMILES is shown below-

```
CCC[C@@H](C)[N+]1=c2c(c(cc([nH]2)C)C)C(=0)[NH+]1

CC[n+]1c(c(c([nH]1)C)CNC(=0)[C@@H]1CCC(=0)N(C1)CCC[NH+]1CCOCC1)C

Cc1ccsc1C(=0)N1CCOc2c(cc(cc2CC)c2c(ncc(n2)C)C)C1

Cc1c2cccc2coc1C(=0)N1CCN(CC1)Cc1cccc(c1)F

CC(=0)c1ccc(s1)C(=0)NC[C@@H]1Cc2cc(cc(c20)F)c1ccccn1

CC1=CC[C@H]2C[C@@H]([C@H](C1C+C2C1)N1CCN(CC1)C(=0)C)CN(C1CC1)C(=0)[C@H]1CCC01

c1ccc2c(c1)c1ccc(cc102)/N=C/c1cc(ccc10)Br

c1ccc(cc1)[C@@H]1[C@@H](C21C(=0)c1ccccc1C2=0)C(=0)c1ccc(cc1)N(=0)=0

C=CCnlnc(nn1)NC(=0)c1cccc(c1)F

CC1=C([C@H]([n+]2c([nH]cn2)N1)c1ccc(cc1)C(=0)C)C(=0)Nc1ccc(cc1)C1

CCCS(=0)(=0)c1ncc(c(n1)C(=0)Nc1ccc(cc1)C(=0)Nc1ccc(cc1)C1

CCCS(=0)(=0)c1ncc(c(n1)C(=0)Nc1cccc1C(=0)N1CCC1)C

CC(C)C0c1ccc(cc1)C(C1ccncc1)C(=0)/C=C/c1cccc(c1)F

c1ccc(cc1)SC1=CS(=0)(=0)CC1
```

To submit a customised database job,

- 1. Click on **Customised Dataset Screening** button.
- 2. Click on first Browse button to upload protein in .pdb format and specify reference ligand (or active site identifier).
- 3. Click on second Browse button to upload customised dataset in .txt format.
- 4. Select the machine learning method for binding affinity calculation (default Select All).
- 5. Specify your email id in text box to get a notification after the completion of the job. (optional)
- 6. Now click on submit button to run your job.

Method 3: Scaffold Search:

This option enable user to filter molecules from million/customised dataset having several scaffolds/functional groups. If one needs to select an active scaffold from it, the SMILES codes of this query active scaffold need to be supplied. User can either paste one scaffold in SMILE format in given text box or can upload a .txt file having only one scaffold. Sample file is given below-

If user only wants to search small molecule having the scaffold, then

- 1. Click on **Scaffold Search** button.
- 2. Either click on Browse button to upload .txt file having one scaffold in SMILE format or paste (or type) scaffold in given text box
- 3. select one database against which you want to search. (Default Zinc Database)
- 4. Specify your email id in text box to get a notification after the completion of the job. (optional)
- 5. Now click on Submit button to run your job.

Select Database 10 - 3
Complex (Protein with Active Site) (Optional) Browse Download Sample file Download Sample file Download Sample file Download Sample file Do

If user wants to search small molecule having the scaffold and want to screen target protein against search hit, then

- 1. Click on **Scaffold Search** button.
- 2. Either click on browse button to upload .txt file having one scaffold in SMILE format or paste (or type) scaffold in given text box
- 3. select one database against which you want to search. (Default Zinc Database)
- 4. Click on browse button to upload protein in .pdb format and specify reference ligand (or active site identifier).
- 5. Select machine learning method for binding energy calculation.
- 6. Specify your email id in text box to get a notification after the completion of the job. (optional)
- 7. Now click on Submit button to run your job.

Upload SMILES*	Select Database 03
Browse No file selected	Zinc Database DrugBank
Format: txt Download Sample file	FDA-Approved: DrugBank BIMP (Indian Medicinal Plants)
OR Paste SMILES String	Complex (Protein with Active Site) (Optional)
Enter SMILES (only one entry accepted)	Browse 4 pdb
1	Download Sample file
Sample load	Select refrence ligand BMA v Select Method v

Results

Virtual Screening:

Virtual screening result of "all machine learning method" is shown below-

	Results for Job ID :1634473825 Job type : Virtual Screening									
	Inputs & Selected options Input complex: Complex.pdb Reference Ligand: CR8 Database Selected: DrugBank Selected Method(s) for Binding Affinity Calculations: All Methods	This inpu give	s are it de en JC	a co tails)BID	ntain for ()	he				
拳 Note	2: User can download each row by selecting the S.No. coloumn then clicking the Download link below Please save your data on your local machine. Your data will be deleted aft Download	er 30 day	s fron	n our	serve	r. Th	his is th alue fro achine	e bindir m differ learnin	ng affin rent g methr	ity
S.No.	SMILE-descriptor	Drug ID	ERF	RF	DNN	KNN	SVR	ESVR	LR	4
1	CC1=NC=C(COP(0)(0)=0)C(C=0)=C10	DB00114	-8.2	-8.2	-9.3	-7.9	-8.7	-9.1	-8.8	F
2	NC1=NC(=0)C2=C(NCC(CNC3=CC=C(C=C3)C(=0)N[C@@H](CCC(0)=0)C(0)=0)N2)N1	DB00116	-7.9	-8.0	-8.5	-7.1	-8.7	-8.8	-8.7	
3	N[C@@H](CC1=CNC=N1)C(O)=O	DB00117	-7.8	-8.0	-8.2	-7.5	-8.9	-8.6	-8.9	£
121										
4	C[S+](CC[C@H](N)C([O-])=O)C[C@H]10[C@H]([C@H](O)[C@@H]10)N1C=NC2=C1N=CN=C2N	DB00118	-5.9	-5.8	-5.5	-7.1	-6.5	-5.0	-6.6	
4	C[S+](CC[C@H](N)C([0-])=0)C[C@H]10[C@H]([C@H](0)[C@@H]10)N1C=NC2=C1N=CN=C2N CC(=0)C(0)=0	DB00118 DB00119	-5.9	-5.8 -6.4	-5.5	-7.1 -6.2	-6.5	-5.0 -6.4	-6.6	
4 5 6	C[S+](CC[C@H](N)C([O-])=O)C[C@H]10[C@H]([C@H](O)[C@@H]10)N1C=NC2=C1N=CN=C2N CC(=O)C(O)=O N[C@@H](CC1=CC=CC=C1)C(O)=O	DB00118 DB00119 DB00120	-5.9 -6.4 -6.0	-5.8 -6.4 -6.1	-5.5 -6.9 -5.6	-7.1 -6.2 -7.3	-6.5 -7.1 -6.4	-5.0 -6.4 -5.0	-6.6 -7.1 -6.6	

To download the whole result, check the serial number box and hit the **"Download"** button. The result will be downloaded in .csv format. User can also download only selected result by selecting individual serial number and then **"Download"** button. On clicking at Drug ID's, users are navigated to respective database for the detailed information of ligand.

	D Download		0	Select indi	vidually			2	Download
S.No.	SMILE-descriptor	S.No.	1				SMI	LE-descriptor	
1 🗸	CC1=NC=C(COP(0)(0)=0)C(C=0)=C10	1 🗸	CC1=NC:	=C(COP(C	0)(0)=0)	C(C=0):	=C10		
2	NC1=NC(=0)C2=C(NCC(CNC3=CC=C(C=C3)C(=0)N[C@@H](CCC(0)=0)C(0)=0)N 2	NC1=NC	(=0)C2=		VC3=CC	=C(C=C)	3)C(=0)N[C@@H	l(CCC(0)=0)C(0)=0
3	N[C@@H](CC1=CNC=N1)C(O)=0	3./	NICOOH	1/(()1=0	NC=N1)C	(0) = 0		/ / / [/	
			CIE LICC			-0)0[0			@@H110\N1C_NC2-
		NC2=C 4			i)c([0-])	=0)0[00	ωπjio[C		.@@H]10)N1C=NC2=
5	cc(=0)c(0)=0	5	CC(=0)C	0=(0)					
6 🗸	N[C@@H](CC1=CC=CC=C1)C(O)=O	6	N[C@@H](CC1=C	C=CC=C	1)C(0)=	0		
7 🗸	[H][C@]12CS[C@@H](CCCCC(O)=O)[C@@]1([H])NC(=O)N2	7 🗸	[H][C@]:	12CS[C@	@H](CCC	CC(0)=0	D)[C@@]1([H])NC(=O)N2	
8 🗸	C[N+](C)(C)CCO	8	C[N+](C)	(C)CCO					
9 🗸	NCCCC[C@H](N)C(O)=O	9 🗸	NCCCCIC	@H1(N)C	(0)=0				
10	N[C@@H](CCCNC(N)=N)C(O)=O	10	N[C@@H	1/CCCNC	(N)=N(C)	(0)=0			
	Patter Dp Copy ~ Patter Ø Format Painter Copboard Fs V29 • I × J Fert V29 • I × J J	1 Merge & Cent	er v 🕅 v	% 9 5	Fan Fan	nditional Fi matting * St	ormat as C Table ~ Sty yles	iell Insert Delete	
	A B	C D	E	F	G	н	1	J K	
	1 S.No. SMILE-descriptor	Drug ID ERF	RF	DNN K	NN S	VR E	SVR LI	R	
	2 1 CC1=NC=C(COP(0)(0)=0)C(C=0)=C10 3 A C1=NC=C(COP(0)(0)=0)C(C=0)=C10 3 A C1=NC=C(COP(0)(0)=0)C(C=0)=C10	DB00114 -	8.2 -8.2	-9.3	-7.9	-8.7	-9.1	-8.8	
	4 3 NIC##HI(CC1=CNC=N1)C(0)=0	DB00117	7.9 -6	-8.3	-7.1	-0.7	-8.6	-8.9	
	5 4 C[S+1(CC[C@H](N)C([O-1]=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O	N1 DB00118 -	5.9 -5.8	-5.5	-7.1	-6.5	-5	-6.6	
	6 5 CC(=0)C(0)=0	D800119 -	5.4 -6.4	-6.9	-6.2	-7.1	-6.4	-7.1	
	7 6 N[C@@H](CC1=CC=CC=C1)C(O)=O	DB00120	-6 -6.1	-5.6	-7.3	-6.4	-5	-6.6	
	8 7 [H][C@]12CS[C@@H](CCCCC(O)=O)[C@@]1([H])NC(=O)N2	D800121 -	8.6 -9	-9.9	-8.5	-9.5	-10.3	-9.4	
	9 8 c[N+](C)(C)CCO	DB00122 -	8.7 -9.1	-9.7	-9	-9.7	-10.3	-9.6	
	10 9 NCCCC[C@H](N)C(O)=O	DB00123 -	8.4 -8.6	-9.6	-8	-9.4	-9.9	-9.3	
	11 10 N[C@@H](CCCNC(N)=N)C(O)=O	DB00125 -	8.7 -8.9	-9.5	-8	-9.3	-9.6	-9.4	
	12 11 [H][C@@]1(OC(=O)C(O)=C1O)[C@@H](O)CO	DB00126 -	8.6 -8.9	-9.2	-8.8	-9.5	-9.5	-9.6	
	13 12 NCCCNCCCNCCCN	DB00127 -	8.8 -9	-9.8	-10.4	-8.8	-9.8	-9	
	14 13 N[C@@H](CC(O)=O)C(O)=O	DB00128 -	7.2 -7.5	-7.5	-6.7	-8.5	-7.5	-8.3	
	15 14 NCCC[C@H](N)C(O)=O	DB00129 -	7.5 -7.3	-8.3	-8.7	-8	-8.3	-8.1	
	16 15 N[C@@H](CCC(N)=O)C(O)=O	DB00130 -	8.9 -8.9	-10.1	-9	-9.7	-10.4	-9.7	
	17 16 NC1=C2N=CN([C@@H]30[C@H](COP(O)(O)=O)[C@@H](O)[C@H]30)C2DB00131 -	8.3 -8.5	-8.9	-8.6	-9.2	-9.3	-9.1	
	18 17 CC\C=C/C\C=C/C\C=C/CCCCCCC(0)=O	DB00132 -	8.7 -8.8	-9.6	-8.3	-8.8	-9.6	-8.9	
	19 18 N[C@@H](CO)C(O)=O	DB00133 -	8.6 -8.8	-9.4	-8.2	-8.9	-9.5	-9	
	20 19 CSCC[C@H](N)C(O)=O	D800134 -	-8.8	-9.9	-7.9	-9.3	-10.1	-9.3	

Virtual screening result of one machine learning method-

	Job type : Virtual Screening		
	Inputs & Selected options		
	Input complex: Complex.pdb		
	Reference Ligand: CR8		
	Database Selected: FDA-Approved: DrugBank		
	Selected Method(s) for Binding Affinity Calculations: Extremely Random Forest		
S. Notor	lear can developed each rew by celesting the C.Ne, celeving thes slicking the Developed link below		
& Note:	Please save your data on your local machine. Your data will be deleted after 30 days from ou	server.	
	Download		
S.No.	Download SMILE-descriptor	Drug ID	ERF
S.No.	Download	Drug ID ZINC00000023	ERF -7.5
S.No.	Download SMILE-descriptor C=CCc1ccccc10C[C@H](0)C[NH2+]C(C)C CC[C@)(C)(C[NH+](C)C)OC(=0)c1ccccc1	Drug ID ZINC00000023 ZINC00000038	ERF -7.5 -8.8
S.No.	Download SMILE-descriptor C=CCc1ccccc10C[C@H](0)C[NH2+]C(C)C CC[C@](C)(C[NH+](C)C)OC(=0)c1ccccc1 CC[C@](C)(C(NC)C)OC(=0)c1ccccc1	Drug ID ZINC00000023 ZINC00000038 ZINC00000038	ERF -7.5 -8.8 -6.3
S.No. 1 2 3 4	Download SMILE-descriptor C=CCc1ccccc1OC[C@H](0)C[NH2+]C(C)C Cc[C@](C)(C(N+1)(C)C)OC(=0)c1ccccc1 Cc[C@](C)(CN(C)C)OC(=0)c1ccccc1 Cc[C@](C)(CN(C)C)OC(=0)c1ccccc1 Cc(=0)oc1ccccc1C(=0)o	Drug ID ZINC000000023 ZINC00000038 ZINC00000038 ZINC00000038	ERF -7.5 -8.8 -6.3 -8.5
S.No. 1 2 3 4 5	Download SMILE-descriptor C=CCc1ccccc1OC[C@H](0)C[NH2+]C(C)C Cc[C@](C)(C[NH+](C)C)OC(=0)c1ccccc1 Cc[C@](C)(CN(C)C)OC(=0)c1ccccc1 Cc(C=0)(C)(CN(C)C)OC(=0)c1ccccc1 Cc(C=0)(C)(CN(C)C)OC(=0)c1ccccc1 Cc(C=0)(C)(CN(C)C)OC(=0)c1cccc(1) (NH3+]C[C@H](C)(C=0)O(c1ccc(C))cc1	Drug ID ZINC00000023 ZINC00000038 ZINC00000038 ZINC00000053 ZINC00000053	ERF -7.5 -8.8 -6.3 -8.5 -6.3
S.No. 1 2 3 4 5 6	Download SMILE-descriptor C=CCc1ccccc10C[C@H](0)C[NH2+]C(C)C CC[C@](C)(C[NH+](C)C)OC(=0)c1ccccc1 CC[C@](C)(CN(C)C)OC(=0)c1ccccc1 CC[C@](C)(CN(C)C)OC(=0)c1ccccc1 CC(=0)Oc1ccccc1(C=0)O [NH3+]C[C@H](CC(=0)O)c1ccc(Cl)cc1 C[C@@H](C(N+1](C)(C)OC(=0)N)	Drug ID ZINC00000023 ZINC00000038 ZINC00000038 ZINC00000053 ZINC00000061	ERF -7.5 -8.8 -6.3 -8.5 -6.3 -6.1

Customised dataset screening:

Customised dataset screening result containing the predicted binding free energies of the query molecules is shown below for "All methods" and for "one method"-

Scaffold search result:

Scaffold search result without target protein contain SMILE descriptor which have query scaffold and Drug Id of small molecules while Scaffold search result with target protein have SMILE descriptor, Drug Id, and predicted binding energy values against target protein from different machine learning methods.

