
MMGBSA: Thermodynamics of Biomolecular Systems 

 

The MMGBSA approach employs molecular mechanics, the generalized Born model and 

solvent accessibility method to elicit free energies from structural information circumventing the 

computational complexity of free energy simulations. The MMGBSA approach is parameterized 

within the additivity approximation [1] wherein the net free energy change is treated as a sum of a 

comprehensive set of individual energy components, each with a physical basis. The approach, 

when used with modified solvation parameters viz. m2GB model [2], is expeditious and fairly 

reliable for studying the energetics of bimolecular systems. Especially important is the application 

of this approach to determine the binding free energies in biomolecular complexes e.g protein-

DNA, protein-drug and DNA-drug complexes. 

 

The statistical mechanical theory [3,4] of binding affinities in aqueous media is presented below. 

 [P]aq + [L]aq = [P*L*]aq        (1) 

P and L are the reactants and P*L* is the product of binding in aqueous medium. The 

superscript ‘*’ denotes structural changes accompanying binding. At equilibrium 

µP.aq+ µL.aq = µP*L*.aq        (2) 

µP.aq is the chemical potential of species P in the solvent medium (partial molar Gibbs free 

energy) and µo
P.aq is its standard chemical potential i.e. under conditions of 1 bar in gaseous state 

and 1 molar (designated as Co) in liquid state. 

µο
P.aq + RT ln (γPCP/Co) + µο

L.aq + RT ln (γL CL/Co)  

= µο
P*L*.aq+ RT ln (γ P*L*C P*L*/Co)      (3) 

where γP is the activity coefficient of species P and CP its concentration. The standard 

molar Gibbs free energy of the reaction (standard absolute molar Gibbs free energy of binding) is  

∆Gο
aq = µο

P*L*.aq - (µο
P.aq +µο

L.aq) 

= - RT ln [γ P*L*CP*L* Co /(γPCP)(γL CL)] = - RT ln Keq.aq    (4) 

In terms of canonical partition functions (Q) 

∆Gο
aq = ∆Aο

aq + P∆Vo
aq = - RT ln Keq.aq =   

- RT ln [{QP*L*.aq/(NAQw)}/{(QP.aq/(NAQw))(QL.aq/(NAQw))}] + P∆Vo
aq  (5) 

∆Gο
aq = - RT ln [{Qtr

P*L* Qrot
P*L* Zint

P*L*.aq Qel
P*L*NAQw}/ 

{(Qtr
PQrot

PZint
P.aqQel

P) (Qtr
LQrot

LZint
L.aqQel

L)}] + P∆Vo
aq    (6) 

∆Αο is the standard Helmholtz free energy of the reaction. NA, the Avogadro number, in 

the above equation originates in expressing partition functions Q as molar partition functions and 

P∆Vo
aq is the pressure-volume correction to Helmholtz free energy in the solvent medium. Qw 

denotes the partition function for pure solvent (water). Zint is the configurational partition function. 



It includes contributions from vibrations and internal motions as well as solvation (hydration) 

effects. The translational and rotational terms have been separated out. 

Zint
P.aq = ∫…..∫ exp {(-E(XN

P,XM
W)/kBT} dXN

P dXM
W = <exp (E(XN

P,XM
W)/kBT>  (7) 

XN
P and XM

W represent the configurational space accessible to the solute P and solvent 

W respectively, in the presence of each other. E(XN
P,XM

W) denotes the total potential energy of 

the system describing non-idealities. It includes intramolecular interactions within the solute P and 

solvent W as well as intermolecular interactions between the solute and the solvent. kBT is the 

product of Boltzmann constant and temperature (in Kelvin). 

Qel
P  ~ 1 (for non-covalent associations)      (8) 

The standard free energy change accompanying binding may be written as a sum of external 

(translational and rotational) and internal (intramolecular, intermolecular and solvation) 

contributions. 

∆Gο = - RT ln [Qtr
P*L* NA/(Qtr

PQtr
L)] - RT ln [Qrot

P*L*/(Qrot
PQrot

L)] 

   - RT ln [(Zint
P*L*.aqQw)/(Zint

P.aqZint
L.aq)] + P∆Vo

aq   (9) 

Eq. (9) is an exact expression for evaluating binding free energies for non-covalent 

associations in aqueous medium. The first two terms on the right hand side of eq. (9) can be 

computed analytically. The third term is accessible to free energy molecular simulations 

configured in the canonical ensemble such as the perturbation method, thermodynamic 

integration, potential of mean force method etc. [5], albeit they are computationally expensive 

even for a single ligand and not practical in a high through-put sense even on supercomputers.  

In the following, we consider some simplifications to bring the binding free energy computations 

into feasibility domain. The molecular translational partition function of P is  

qtr
P = V/Λ3

P = V/(h2/2πmPkBT)3/2       (10) 

The molar partition function of P is  

Qtr
P = (qtr

P)NA         (11) 

Note that the volume V has been included in the translational part consistent with ideal 

gas statistical mechanics. This would require that the Zint be divided by V to quantify non-idealities 

(excess free energies). The translational part of the free energy in eq (9) is now given by the 

Sackur-Tetrode [6] equivalent as  

∆Gο
tr = - RT ln [(NA/V)(Λ3

PΛ3
L /Λ3

P*L*)]   

         = - RT ln [(NA/V)(h2/2πkBT)3/2{mP*L*/(mPmL)}3/2]    (12) 

The expression in the square brackets in eq (12) is dimensionless. (NA/V) may be 

replaced by a concentration term ensuring that upon transfer to aqueous medium standard free 

energies are recovered with the reference state anchored to a molar concentration of unity. Note 

that this expression is the same whether in gas phase or liquid phase provided the translational 

and rotational motions of the solute are unaffected by the solvent. This will be true only in a 



continuum, friction-less solvent influencing the position dependent potential energy but not the 

velocity dependent kinetic energy of the solute. Hence in a transfer process (an experiment 

involving transfer of species P from one phase to another phase such as from gas phase to liquid 

phase or octanol to water etc.), this term cancels out. In binding processes however, no such 

cancellation occurs.  Also if P, L and P*L* could be seen as a collection of non-bonded mono-

atomic particles, then again the translational partition function for each species could be written 

as a product of the individual partition functions of the constituent atoms and since the number of 

atoms is conserved during binding, these terms would cancel out. Again, this is not so for 

polyatomic species where the mass in translational partition function mP (= Σi mi ) is evaluated as 

a sum of the masses of the constituent atoms. It is recommended that Sackur-Tetrode equation 

be applied not in aqueous medium directly where it is invalid but upon transfer to vacuum via a 

suitable thermodynamic cycle.  

Similar arguments apply to the rotational partition functions. Separating the rotational part 

from internal motions implies working under rigid rotor approximation. 

∆Go
rot =  - RT ln [(σPσL/σP*L*)(1/(8π2))(h2/2πkBT)3/2 x  

{(Ia
P*L* Ib

P*L* Ic
P*L*)/(Ia

PIb
PIc

PIa
L Ib

L Ic
L)}1/2]     (13) 

IaP , IbP and IcP are the components of moments of inertia of species P along the principal 

axes and σP its symmetry number. Murray and Verdonk [6] brought out the importance of 

rotational and translational entropies lost by small molecules on binding to proteins. 

∆Gο =   ∆Go
tr + ∆Go

rot - RT ln [(Zint
P*L*.aqQwV)/(Zint

P.aqZint
L.aq)] + P∆Vo

aq  (14) 

Free energy contributions from internal motions that are coupled to solvent are best handled via 

molecular simulations. Separating the two will amount to an approximation. 

Zint
P.aq = ZP

vib.conf
.ZP

solvn.

Zint
P.aq = ∫…..∫ exp {(-E(XN

P,XM
W)/kBT} dXN

P dXM
W = 

[∫..∫ exp {(-E(XN
P)/kBT} dXN

P ] x [∫..∫ exp {(-E(XP
Nfixed;XM

W)/kBT} dXM
W] (15) 

Equations similar to (15) can be written for L and P*L* and converted to excess free 

energies. Such a separation allows  

∆Gο = ∆Go
tr + ∆Go

rot + ∆Go
int + ∆Go

solvn.      (16) 

Eq. (16) forms the theoretical basis for the additivity assumed in free energy 

computations as employed in master equation methods [7,8]. The P∆Vo
aq term in equation (9) is 

often neglected in liquid-state work. If eqs (15) and (16) are employed for each structure 

generated according to Boltzmann distribution either via molecular dynamics or Metropolis Monte 

Carlo and averages computed with a suitably calibrated model for solvation energy for each 

structure, the results are expected to correspond to eq. (9) which is exact. 

Recent advances in free energy methodology offer two attractive methods viz. the 

MMPBSA [9-11] and the MMGBSA [12-14], which utilize the structural information emanating 



from molecular dynamics simulations to develop estimates of binding free energies using 

equations (15) and (16) above, in a post facto analysis of the trajectories on each structure 

followed by energy component averaging. The essence is to generate structures with explicit 

solvent and transfer these to continuum solvent for energy evaluations thus rendering the free 

energy problem computationally tractable. A practical implementation of the above free energy 

methodology involves computation of average intramolecular energy (internal energy / enthalpy), 

corresponding entropies, solvation free energies of the solute along the MD trajectories of the 

free and bound protein and ligand.  

∆Gο 
int =   ∆Ηο 

int −  Τ∆Sο 
int                    (17) 

∆Hο 
int = ∆Hο 

intermolecular + ∆Hο 
intramolecular

∆Hο 
intermolecular =   ∆Ηο 

el +  ∆Ηο 
vdW    =   

< ∆Eο
intermolecular >  =  < ∆Eο 

el > + < ∆Eο
vdW >           (18) 

∆Hο 
intramolecular   = < ∆Eο

intramolecular >       (19) 

where, ∆Eο
el , ∆Eο

vdW represent the electrostatic and van der Waals components of the 

intermolecular interaction energy between the protein and the inhibitor and ∆Eο
intramolecular 

represents changes in the intramolecular energy which includes both bonded and non-bonded 

terms as described by a force field for the protein and the inhibitor upon binding. All these 

quantities can be computed from a force field either for a fixed structure (from minimization 

studies) or for an ensemble of structures from MD simulations.  

∆Sο 
int =   ∆Sο 

vib,config                                    (20) 

∆Sο
vib, config can be calculated by normal mode analysis for energy minimized structures 

(∆Sο
vib) or by quasi harmonic approximation introduced by Karplus and Kushick [15] and 

subsequently extended and adapted to MD simulations by Schlitter [16] and van Gunsteren [17]. 

To account for structural deformation upon binding, we include adaptation expense which 

accounts for changes in the intramolecular energetics explicitly in ∆Gο 
int, and it is calculated as 

the difference in the free energies of the bound and unbound states of the protein and the 

inhibitor in the presence of the solvent. 

In the MMGBSA or MMPBSA models, the solvation free energies are computed as 

∆Gο
solvn = ∆Gο

GBSA = ∆Gο
GB + ∆Gο

SA             (21) 

where ∆Gο
GB refers to the electrostatic component of solvation while ∆Gο

SA is the non-

electrostatic contribution, called cavitation energy in literature [18]. The defining equation 



employed for evaluating the electrostatic contribution to the solvation free energy [12] with the 

MMGBSA model is 

G0
el.solvn = -166 (1 - 1/∈) ∑ q

=

n

1i
∑
=

n

1j
iqj / fm2GB                 (22) 

∆Gο
GB = G0

el.solvn (final state) - G0
el.solvn (initial state)            (23) 

Similar equations are formulated to deal with added salt effects at the Debye-Huckel level 

[19]. Small ions associated with the biomolecular target and the ligand to maintain 

electroneutrality are dealt with explicitly in simulations and processed as part of the solute. The 

non-electrostatic (nel) contributions to the solvation free energy [20] are computed as a function 

of the solvent accessible (SA) surface area [21] 

G0
nel.solvn  = γnel ∆A              (24) 

∆Gο
SA = G0

nel.solvn (final state) - G0
nel.solvn (initial state)            (25) 

The quantity γnel has been assigned a value of 7.2 cal/mol/Å2 [22].  This may be considered [19] 

as a resultant of +47cal/mol/Å2 from the cavity term [23] and –39.8 cal/mol/Å2 from van der Waals 

interactions of the solute and the solvent [24]. This separation is only for the purpose of 

interpretation and does not alter the free energy estimates. Thus, a combination of equations (9), 

(10), (14) and (17) yields the absolute binding free energies. The governing equation (16) for 

estimation of free energy change upon binding is 

∆Gο = ∆Go
tr + ∆Go

rot + ∆Go
int. + ∆Go

solvn.                          

The internal and solvation energy components in eq. 16 can be described as, 

∆Go
int + ∆Go

solvn. =  

∆Go
adapt + ∆Go

vc + ∆Go
el + ∆Go

vdW + ∆Go
solvn,el + ∆Go

solvn,nel                                          (26) 

with ∆Go
adapt and vibrational configurational entropy changes identified as  ∆Go

intramolecular 

and ∆Go
solvn,nel  with  ∆Go

cav.  and   ∆Go
net el as a sum of  ∆Go

el and  ∆Go
solvn,el. These components 

can be computed via the MMGBSA methodology. The thermodynamic cycle employed to 

construct the standard free energies of protein-inhibitor binding in solution is illustrated in Figure 

5. Building on eq. (16) and (26), the net binding process is decomposed into six steps and the 

corresponding binding free energy is calculated as a sum of five components: 

∆Go
net= ∆Gvdw + ∆Gnetel + ∆Gcav  + ∆Gadpt + ∆Gtrvc                                                                                   (27) 

In a phenomenological view, equation (16) may be rearranged (eq. 27) and the net 

binding free energy may be considered to be a sum of the free energy changes due to the 

following terms: (i) van der Waals interactions between the protein and the inhibitor indicating the 



influence of shape complementarities and packing effects; (ii) net electrostatics which includes 

interactions between partial or full charges, hydrogen bonds and electrostatics of desolvation 

upon binding and added salt effects, (iii) cavitation effects, which account for change in size and 

shape of solvent cavity on complexation giving rise to water reorganization, a component of 

which, originating from nonpolar sources, is the hydrophobic effect. Here the nonelectrostatics of 

desolvation of both polar and nonpolar atoms is accounted for in the cavitation term; (iv) the 

deformation expense (i.e. the intramolecular contributions due to structural variations upon 

complexation), (v) translational, rotational and vibrational, configurational entropy losses.  
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